タグ

database-tuningとapache-hiveに関するnabinnoのブックマーク (2)

  • データのパーティション化 - Amazon Athena

    データをパーティションすることで、各クエリによってスキャンされるデータの量を制限できるようになるため、パフォーマンスが向上し、コストが削減されます。任意のキーでデータをパーティションに分割することができます。一般的な方法では、時間に基づいてデータをパーティションします。これにより、通常、複数レベルのパーティション構成となります。たとえば、1 時間ごとに配信されるデータを年、月、日、時間でパーティションできます。別の例として、データが配信されるソースが多数に分かれているものの、それらのロードは 1 日 1 回だけ行われる場合には、データソースと日付によるパーティションを行います。 Athena では Apache Hive スタイルのパーティションを使用できます。このパーティションのデータパスには、等号で連結されたキーと値のペア (例えば country=us/... または year=20

  • Amazon Athena のパフォーマンスチューニング Tips トップ 10 | Amazon Web Services

    Amazon Web Services ブログ Amazon Athena のパフォーマンスチューニング Tips トップ 10 2024 年 2 月に更新された原文を日語版として 9 月に反映しました: この記事は、コストベースの最適化とクエリ結果の再利用を含む Amazon Athena エンジンバージョン 3 の変更を反映するために確認および更新されました。 Amazon Athena は、オープンソースのフレームワークに基づいた対話型分析サービスで、標準の SQL を使って Amazon Simple Storage Service (Amazon S3) に格納されたオープンテーブルおよびファイル形式のデータを簡単に分析できます。Athena はサーバーレスなので、インフラストラクチャの管理は不要で、実行したクエリに対してのみ料金を支払います。Athena は使いやすく、Ama

    Amazon Athena のパフォーマンスチューニング Tips トップ 10 | Amazon Web Services
  • 1