数学における有向集合(ゆうこうしゅうごう、directed set)、有向前順序集合 (directed preordered set) あるいはフィルター付き集合 (filtered set) とは、空でない集合 A と反射的かつ推移的な二項関係(つまり前順序)≤ との組 (A, ≤) であって、さらに任意の二元が上界を持つ、すなわち A の任意の元 a, b に対して、A の元 c で a ≤ c かつ b ≤ c を満たすものが必ず存在するものをいう[1]。 有向集合は空でない全順序集合の一般化、すなわち任意の全順序集合は有向集合となるが、一方で必ずしも全ての半順序集合が有向集合となるわけではない。位相空間論において有向集合は列の概念を一般化する有向点族(ネット)の概念を定義するのに用いられ、それにより解析学で用いられる様々な極限の概念を統一的に扱うことが可能になる。有向集合から抽象