タグ

supervised-learningとpattern-recognitionに関するnabinnoのブックマーク (2)

  • 分類 (統計学) - Wikipedia

    分類(ぶんるい、英: classification)や統計的分類や統計的識別とは、統計学において、データを複数のクラス(グループ)に分類すること。2つのクラスに分ける事を二項分類や二値分類、多数のクラスに分ける事を多クラス分類という。Y = f(X) というモデルを適用する際に、Y が離散であれば分類、連続値であれば回帰である。 個体をクラス分けする統計的手続きの一つであり、分類対象に固有な1つ以上の特性についての数値化された情報に基づいて実施される。このとき、事前にラベル付けされた訓練例(英: training set)を用いる。 形式的に表すと、次のようになる。訓練データ から、オブジェクト から分類ラベル へマップする分類器(英: classifier、識別器とも) を生成するのが統計分類である。例えば、スパムのフィルタリングをする場合、 は具体的な電子メールの例であり、 は "Sp

    分類 (統計学) - Wikipedia
  • サポートベクターマシン - Wikipedia

    サポートベクターマシン(英: support-vector machine, SVM)は、教師あり学習を用いるパターン認識モデルの1つである。分類や回帰へ適用できる。1963年にウラジーミル・ヴァプニクとAlexey Ya. Chervonenkisが線形サポートベクターマシンを発表し[1]、1992年にBernhard E. Boser、Isabelle M. Guyon、ヴァプニクが非線形へと拡張した。 サポートベクターマシンは、現在知られている手法の中でも認識性能が優れた学習モデルの1つである。サポートベクターマシンが優れた認識性能を発揮することができる理由は、未学習データに対して高い識別性能を得るための工夫があるためである。 サポートベクターマシンは、線形入力素子を利用して2クラスのパターン識別器を構成する手法である。訓練サンプルから、各データ点との距離が最大となるマージン最大化超

    サポートベクターマシン - Wikipedia
  • 1