タグ

ニューラルネットワーに関するnamickyのブックマーク (1)

  • ディープラーニングの仕組みと応用

    脳の神経回路の構造を模倣 ディープラーニングは、大量のデータを学習するために、人間の脳の神経回路の構造を模倣(モデル化)した情報処理の仕組みであるニューラルネットワークを用いる。図3のニューラルネットワークは、「入力層」「隠れ層」「出力層」という3層で構成している。また、学習データは入力データとなる手書き文字の画素データと、正解データがセットになっている。 このニューラルネットワークのモデルを学習させるには、まず手書き文字画素データをピクセル単位に分割した上で、各ピクセル値を入力層に入力する。図3のモデルでは縦横28ドットで分割していることから、784個が入力層に並ぶ。 入力データを受け取った入力層は、受け取った値に「重み付け」をした上で、後段にある隠れ層のニューロン(神経細胞。CPUのような役割を担う)に伝達する。 同様に隠れ層の各ニューロンは、入力層から受け取った値をすべて加算し、その

    ディープラーニングの仕組みと応用
  • 1