Sign in

仕事ではよくPythonを書いています。 よく使うのでそれなりに知っている気になっていたのですが、 コードをレビューしてもらったり本を読んだりしているうちに”もっと早く知っておきたかった・・・”というネタが溜まってきたので、その中から厳選した5つの小ネタをまとめてみました。 *この記事で使用しているPythonのバージョンはPython 3.7.3です。 この変数、一体何桁? 例えばこんな変数があったとします。 num1 = 100000000 num2 = 10000 num3 = 3023204903 こんな変数がたくさんあったらどうしましょう。 桁を数えるだけで目が疲れそうです。 ぱっと見でだいたい何桁あるかわかるといいですよね。 Pythonでは数値型に_を挟んでも、そのまま数値として計算することができます。 >>> num1 = 100_000_000 >>> num2 = 10
はじめに この記事には、Googleのオンサイト面接に向けて勉強した内容が記載されていますが、それらはすべて面接を受ける直前に書いておいたものです。このエントリを読むことで面接で聞かれた内容が予測されてしまわないようにそのようにさせていただきました。ご了承お願いします。 この記事について 令和元年に医師を退職し、ソフトウェアエンジニアに転職します。 自分にとって大きな転機であったのと、とても大変な道のりであったので、私という人間が辿った道筋を最初から最後までちゃんとまとめておきたいと思いこの記事を書くことにしました。 私のような他業種から未経験での転職を目指されている方にとっても、何らかの参考になる内容であれば幸いです。 私の生い立ち 私は小さい頃からテレビゲームが大好きで、学校から帰るとずっと家でゲームをしている子でした。あまりにもゲームが好きだったので、遊ぶだけではなく自分で作ってみた
Excelユーザーの要望をとりまとめるサイトで、ExcelへのPython搭載の要望が相次いだ。その結果、マイクロソフトは検討のためのアンケートを開始した。 Excelは業務アプリケーションとしてもっとも使われ、普及している製品のひとつでしょう。そのExcelを今後も発展させていくために、マイクロソフトはユーザーが要望を提案できるコミュニティサイト「Excel’s Suggestion Box」(英語)を公開しています。 このコミュニティサイトに2015年11月、Excelのスクリプティング言語としてPythonを搭載してほしいという要望「Python as an Excel scripting language」がポストされました。 それから2年以上が経過し、現時点でこの要望は2位以下を大きく引き離す3862票の賛成票(2017年12月17日現在)を獲得して要望リストのトップにあがってい
1カ月ほど前から、東京大学の松尾研のディープラーニング公開講座に行っている。 ネットで募集していたのであわてて申し込んだら、とんでもない数の人が集まっていて熱気がすごい。学部生、院生、社会人、あわせて300人以上が同時に授業を受けている。 初回こそ、人工知能概論のような話だったけれど、2回目以降はものすごい速度で授業が進む。そして宿題の量と質もすごい。2回と3回目の授業だけで、普通の学校の半年分くらいの内容になっている気がする。東大、ほんとにやべーよ。 毎回、授業の冒頭は「ふんふん、そうか」とはじまるのだけれど、終わり間近に大量のサンプルコードを見せられて、それをすごい勢いで説明され、最後にゴツイ宿題が出る。授業終了後は、ポカーンってなる(授業中にぜんぶ理解しているひと、どれくらいいるんだろう)。 友人の物書堂の社長の広瀬くん(iPhone辞書アプリ開発の大御所!)も、たまたまいっしょに講
データサイエンスとかけ離れた恣意的な表ですが、Jupyter Notebookを使えて損はないのは本当です。 RStudio (pythonはSpyder)もよいですが、 セクシーさ 再現性確保の観点で見るとマークダウンでコメントが残せるJupyter Notebookの方が分があります。 データサイエンティストでなくてもコーディングの過程が保存できるのでおすすめです。 Jupyter Notebookとは? Pythonには元からインタラクティブシェルがついていますが、それで物足りない人たちがIPython(Interactive Python)というインタラクティブシェルを作っていました。 IPythonの使い方より特徴を抜粋 セル指向のコーディング: セルという単位でまとめて実行できます 予約語や変数、モジュール名などのタブ補完 オブジェクトの調査: オブジェクト名に?をつけると詳細
会員事業部の有賀(id:chezou)です。 今年一年、社内では勝手に"Jupyterの伝道師"を標榜してJupyter notebookの普及活動を展開してきました。 先日、社内でハンズオンも行ったおかげもあり、かなり社内のマシンにPython環境が構築されてきました :) Jupyter notebookとは? ひとことで言うとブラウザで動くすごい便利なREPL*1です。 百聞は一見にしかず、見てみましょう。 このように、Rubyの対話環境であるpryを触っているようにインタラクティブにコードを書くことができます。 以降で説明をしますが、Jupyter notebookは記録・共有・再現がとても得意です。特に図表があるときにその効果を発揮します。 Jupyter notebookの良い所 過去のコードを改変、再実行できる セルと呼ばれる入力部分にはMarkdownやコードが記述できます
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? pythonの環境構築について "python 環境構築"でググると20万件くらいヒットしますが、割と内容が古いです。 タイトルにはデータサイエンティストと書いてありますが、データサイエンティスト以外にもanacondaはおすすめです。 2.x or 3.x? 3.xは動かないライブラリが多いので2.x推奨 > 3.xで動かないライブラリがある、くらいまで来ました。 easy_installでpipを入れて、setuptoolsも入れて、でもwheelというのもあって... > 古いです。 virtualenv 必須 > そんなこともな
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く