タグ

モデリングとアルゴリズムに関するomega314のブックマーク (8)

  • カルマンフィルターが自動運転の自己位置推定で使われるまで - TIER IV Tech Blog

    はじめまして、ティアフォー技術部 Planning / Controlチームで開発を行っている堀部と申します。 今回は状態推定の王道技術「カルマンフィルター」が実際に自動運転で用いられるまでの道のりやノウハウなどを書いていこうと思います。 みなさんはカルマンフィルターという言葉を聞いたことがありますでしょうか。 カルマンフィルターとは「状態推定」と呼ばれる技術の一種であり、自動運転においては現在の走行状態、例えば車速や自分の位置を知るために用いられます。 非常に有名な手法で、簡単に使えて性能も高く、状態推定と言えばまずカルマンフィルターと言われるほど不動の地位を確立しており、幅広いアプリケーションで利用されています。 使い勝手に定評のあるカルマンフィルターですが、実際に自動運転のシステムとして実用レベルで動かすためには多くの地道な作業が必要になります。 この記事では、カルマンフィルターが

    カルマンフィルターが自動運転の自己位置推定で使われるまで - TIER IV Tech Blog
  • 輸送問題を近似的に行列計算で解く(機械学習への応用つき) - 私と理論

    輸送問題と呼ばれる問題があります. この問題は,普通は線形計画法やフローのアルゴリズムを使って解かれます. この記事では,この輸送問題を近似的に行列計算で解くアルゴリズム(エントロピー正則化 + Sinkhorn-Knopp アルゴリズム)を紹介します. 輸送問題とは アルゴリズム 得られる解の例 なぜこれで解けるのか? 競プロの問題を解いてみる 機械学習界隈における流行 まとめ 輸送問題とは 輸送問題とは以下のような問題です. 件の工場と 件の店舗からなる,ある商品の流通圏があるとする. 各工場には 個の在庫がある.. 各店舗では 個の需要がある. 在庫の総和と需要の総和は等しいとする (すなわち ). 工場 から店舗 に商品を一つ運ぶためには の輸送コストがかかる. 各工場 から各店舗 への輸送量 を適切に決めて,各店舗の需要を満たしつつ輸送コストの総和を最小化せよ. 輸送問題は最適化

  • メタヒューリスティクス - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "メタヒューリスティクス" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年8月) メタヒューリスティクスとは、組合せ最適化問題のアルゴリズムにおいて、特定の計算問題に依存しないヒューリスティクスのことである。 近年では、上記の定義から拡張され、特定の問題に依存しない、汎用性の高いヒューリスティクス全般を指すこともある。そのため、組合せ最適化問題のアルゴリズムに限らず、連続最適化問題に対するアルゴリズムも含む解釈も存在する。 通常ある問題に対しての「解法」が存在するとき、その解法が適用できる範囲はその問題に対してのみである。 と

  • マスターアルゴリズム ー 世界を再構築する「究極の機械学習」

    原著:ペドロ・ドミンゴス 翻訳:神嶌 敏弘 イラスト:六七質 出版社:講談社 発行日:2021-04-21 ISBN:978-4062192231 書は,ペドロ・ドミンゴス著『The Master Algorithm』の翻訳書で,近年の人工知能技術の進展を支える機械学習についての解説書です.機械学習とは,作業手順を明示的に指示しなくても,それをデータから学ぶ能力を計算機に与える技術です.この機械学習について,計算機科学や統計学の高度な知識を前提とせずに,その内側に踏み込んで仕組みを明らかにし,この技術の可能性と課題を論じています. 出版社ホームページ 版元ドットコム Googleブックス ネット書店:Amazon 楽天ブックス honto 紀伊國屋書店 電子書籍Amazon 楽天ブックス honto 紀伊國屋書店 Apple 読書ログ: 読書メーター(電子版) ブクログ(電子版) 図書

    マスターアルゴリズム ー 世界を再構築する「究極の機械学習」
    omega314
    omega314 2021/03/25
    神嶌敏弘氏のあとがきがよい。信用できる人があまりに少ない分野なので有り難いですね。
  • 俺氏、将棋が二人零和有限確定完全情報ゲームでないことに気づいてしまうwww | やねうら王 公式サイト

    このブログをご覧の方は将棋が二人零和有限確定完全情報ゲームであることはご存知でしょう。これは、ゲーム理論や探索アルゴリズムの教科書にでも載っています。「二人零和有限確定完全情報ゲームって何?」って方は、Wikipediaでも見ていただくことにして話を先に進めます。 零和とは? この「零和」というのは、和が零。英語で言うとゼロサムです。 零和(「ゼロ和」と読むのが一般的だが「レイワ」とも読む):プレイヤー間の利害が完全に対立し、一方のプレイヤーが利得を得ると、それと同量の損害が他方のプレイヤーに降りかかる https://ja.wikipedia.org/wiki/二人零和有限確定完全情報ゲーム つまり、自分が勝ちなら、相手は負け。相手が勝ちなら自分は負け。勝ちを+1点、負けを-1点、引き分けを0のように定めるなら、(ゲーム終局後に)自分と相手の点数を足すと0になる。なので、ゼロサムゲーム

  • 遺伝的アルゴリズムで画像を生成

    遺伝子はプログラミングで数字列で現れている為、数字列とも呼ばれている。解と個体ということもある。上記の遺伝子は数字列に暗号化すると[3.0, 1.0, 1.0, 2.0, 1.0, 1.5, 2.0, 10.0, 0.5, 0.0, 0.0, 0.5, 4.0, 3.0, 4.0, 5.0, 16.0, 4.0, 0.5, 0.6, 1.0, 0.0] になる。 生物と同じように、遺伝的アルゴリズムにも遺伝子型と表現型がある。図1のポリゴン字列は遺伝子型で、そのポリゴンのデータをそれぞれ用いて画像を描き、最後に出てくる画像が表現型である。 表現型の画像 は目標画像と比較することで遺伝子の適応度が分かる。目標画像と近づいたら、誤差がほぼゼロと等しいと言っていい。画像の適応度を計算する関数は適応関数と呼ばれている。誤差関数と評価関数とも呼ばれる。 無性生殖の遺伝的アルゴリズム (SingleP

  • YouTubeの推薦アルゴリズムの変遷を追う〜深層学習から強化学習まで〜

    はじめにこの記事は「eureka Advent Calendar 2019」24日目の記事です。 こんにちは、Data Analystの @pacocat です! 私はeurekaには2019年11月に入社したばかりなのですが、毎日楽しく仕事させてもらっています。最近はプロダクト開発のための定性調査の仕組みづくりを手伝ったり、事業分析や組織開発をしていたりと、様々な定量・定性データを活用してどのように事業成長に貢献できるか考える日々です。 前職ではAI PdMとして、ゲームや強化学習領域でのAI活用を推進していました(興味ある方はGDC2019での発表や各種スライド slideshare / speakerdeck をご覧ください)。直近はがっつりAIに関わっているわけではありませんが、趣味で推薦×強化学習分野のサーベイをしていたら面白い話題がたくさんあったので、それらの中からYouTub

    YouTubeの推薦アルゴリズムの変遷を追う〜深層学習から強化学習まで〜
  • Sparse Gaussian Markov Random Field Mixtures for Anomaly Detectionを読んだ - yasuhisa's blog

    異常検知の一環で外れ値検知をやっていると「どの事例が外れ値か分かるだけじゃなくて、どの次元がおかしくなったかも教えて欲しい。次元数が100とかあると、どの次元がおかしい動きをしているか人手で見るのは大変」というのをちらほら聞きます。Gaussian Markov Random Field (GMRF)を使うと、どの次元の動きがおかしくなったかも異常検知の枠組みで捉えることができる場合があります。 異常検知読書メモ Part 3(疎構造学習による異常検知) - yasuhisa’s blog グラフィカル Lasso を用いた異常検知 しかし、この方法は使える状況が限定的で、システムの状態が複数ある(例: 昼と夜で負荷が違うなど)場合にはうまく機能しません。システムに複数の状態が存在することは実データでは珍しくないので、そういった状況にも対応できる方法を探していたところ、ぴったりの論文が

    Sparse Gaussian Markov Random Field Mixtures for Anomaly Detectionを読んだ - yasuhisa's blog
    omega314
    omega314 2018/04/22
    「正常な状態」≒「相関構造」≒「マルコフ確率場」≒「ガウス分布の精度行列(←sparse推定できる」という対応。更に、「Sparse mixture of sparse graphical models」なので、混合重みもsparseに推定し、混合数の決め方の問題に対応
  • 1