タグ

電池と固体物理に関するotori334のブックマーク (3)

  • 多数の水素からなるクラスターの“擬回転”を利用した室温超イオン伝導の新たな発現原理を確立

    発表のポイント 1つの金属原子に多数の水素が結合したクラスターが示す“擬回転”に着目 擬回転を利用することで、室温でも従来材料より優れたイオン伝導を実現 室温超イオン伝導の新たな発現原理が確立され、次世代蓄電池の開発が加速 概要 東北大学金属材料研究所の高木成幸准教授と同大学材料科学高等研究所の折茂慎一所長らの研究グループは、1つの金属原子に多数の水素が結合したクラスター(=“高水素配位”錯イオン)が示す“擬回転”により促進される新たな室温超イオン伝導現象を発見しました。 籠状構造をもつB12H12などの錯イオンを含む水素化物は、これらの錯イオンの高速回転がリチウムなどのイオン伝導を促進することから全固体二次電池の固体電解質としての応用が期待されています。一方、錯イオンを回転させるためには高いエネルギー(=温度)が必要であり、実用上最も重要な室温付近で高い伝導度を得にくいことが解決すべき課

    多数の水素からなるクラスターの“擬回転”を利用した室温超イオン伝導の新たな発現原理を確立
  • リチウムイオン電池の充電過程を原子レベルで解明

    東京大学は、走査透過型電子顕微鏡(STEM)を用い、次世代リチウムイオン電池の充電過程を原子レベルで解明することに成功した。高容量で寿命が長い電池材料の開発につながる研究成果とみられている。 劣化の主な原因は酸素放出や局所構造の乱れ 東京大学大学院工学系研究科附属総合研究機構の幾原雄一教授と柴田直哉教授、石川亮特任准教授および、仲山啓特任研究員のグループは2020年9月、走査透過型電子顕微鏡(STEM)を用い、次世代リチウムイオン電池の充電過程を原子レベルで解明することに成功したと発表した。今回の成果は、高容量で寿命が長い電池材料の開発につながるとみられている。 次世代の高容量リチウムイオン電池の正極材料として、Li2MnO3など「リチウム過剰系」が注目されている。従来材料のLiCoO2などに比べ、リチウムイオンを約1.6倍も多く含んでいるからだ。しかも、3次元的にリチウムの脱挿入が可能で

    リチウムイオン電池の充電過程を原子レベルで解明
  • スポット溶接の原理|溶接機 販売 Yokodai.JP

    スポット溶接は、溶接したい2片の金属の上下から電極をあて、適度な圧力を加えながら、大電流を流し発生した熱で金属を溶かして接合します。 また、上下から電極を当てられないバッテリーへのタブ溶接などの場合は、左の等価回路で示したように、タブ板とバッテリー間のR3による発熱で溶接させます。溶接品質は、溶接電流・通電時間・押下圧力・材質等の影響を受けます。溶接電流は、溶接する部材の材質や表面の状態や電極押下圧力により変化します。スポット溶接により得られる接着部分を、ナゲットと呼びますが、良質なナゲットを得るためには、これらの要素をコントロールする必要があります。また、電極自身が溶着しないためには、電極の材質と放熱も重要です。同じ材質・条件下で大量・高速の溶接を行う特定用途向け溶接機が、これらを最適値に設定していくのに対して、パーソナル用は様々な素材形状と材質を相手にすることになります。でも、それほど

    otori334
    otori334 2020/08/10
    “突起を作ることにより、突起部分に電流が集中するために、突起部分が発熱溶融します。温度が上昇するに従って電気抵抗も適度に増加し、”
  • 1