『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day
『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day
こんにちは。検索基盤部の橘です。ZOZOTOWNでは、商品検索エンジンとしてElasticsearchを利用し、大規模なデータに対して高速な全文検索を実現しています。 Elasticsearchに関する取り組みは以下の記事をご覧ください。 techblog.zozo.com 検索基盤部では、ZOZOTOWNの検索結果の品質向上を目指し、新しい検索手法の導入を検討しています。本記事ではベクトル検索と呼ばれる検索手法に関して得た知見を紹介します。 ※本記事はElasticsearchバージョン8.9に関する内容となっています。 目次 目次 ベクトル検索とは ベクトル検索に期待すること Elasticsearchを使用したベクトル検索の導入 導入の簡略化 デプロイ可能な埋め込みモデル ベクトル検索のクエリ ハイブリッド検索とは Elasticsearchを用いたハイブリッド検索 RRF(Reci
こんにちは。 機械学習チームにてレコメンドの改善を行っているgumigumi4fです。 この記事では、Fluentdにて収集したログをBigQueryに挿入する際に使用しているプラグインを置き換えることによって、高スループットかつ低コストを実現した話について紹介します。 背景 pixivではアクセスログやアプリケーションログ等をBigQueryに収集し、分析できるような仕組みを構築しています。 BigQueryへアクセスログを挿入する際はFluentdとそのプラグインであるfluent-plugin-bigqueryを用いて直接BigQueryへ書き込むようになっていたのですが、その際にログ欠損が起こることが問題となっていました。 ログの欠損はピークタイムで発生しており、そのピークタイムのログの流量は概ね毎秒30000logとかなり多く、実際Fluentdのworkerプロセスが1work
1: 購入 0: 閲覧(したが購入してない) -: 未観測 ユーザーベース型 ユーザー同士の類似度を計算 「あなたと購入履歴の似たユーザーはこんな商品を買っています」 行を各ユーザーのベクトルとみなして、似たユーザーを見つける(上位N人) 似たユーザーが購入しているアイテムを推薦する(N人の平均値などで購入しそうな順に提示) アイテムベース型 アイテム同士の類似度を計算 「この商品を買ったユーザーはこんな商品も買ってます」 列を各アイテムのベクトルとみなして、類似度の高いアイテムを推薦する(上位M件) 類似度計算には、コサイン類似度やJaccard類似度が使われる。 類似度を計算する際に、未観測「-」は適当な値(0, 0.5など)で埋めるか、無視をする。 ログデータを使うため、情報の少ない新規アイテム/新規ユーザーに弱いコールドスタート問題がある。 コンテンツベースフィルタリング アイテム
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く