MXnet / Kerasが本格的に普及してきたことで、いよいよ「誰でも(割と)気軽にDeep Learningを実践できる」時代になってきましたね、という話を前回の記事では一通りやってみました。 ということで、これからしばらく「気軽に実践できるようになったけど実際問題Deep Learningってどうなん?」というのを色々サンプルデータセットを替えて学習&予測の挙動を見ることで、その実態を体感してみようという技術ネタシリーズをダラダラやってみようかと思います。 フレームワークはMXnet / Kerasどちらでも良いつもりですが、単に自分の環境でのお手軽さを優先して基本的にMXnetで統一しようと思います。リクエストがあればKerasでの実行例も後から追記するようにしますので、どうしてもKerasでどう回すか分からない!という方はコメント欄なりでご一報ください。 追記部分について 非常に