タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

pandasに関するpetite_blueのブックマーク (2)

  • お前らのpandasの使い方は間違っている - Qiita

    この記事は株式会社Nuco Advent Calendar 2022の9日目の記事です。 はじめに いきなりお馴染みの「キャッチーでウィットでセンセーショナルな」タイトルで失礼します。 私自身、業務の中でpandasに大変お世話になっており、自戒も込めてpandasの「アンチパターン」をまとめてみました。 この記事を読んで、より快適なpandasライフを送っていただけると嬉しいです。 対象読者 Pythonを使ったデータ分析機械学習に携わる方 この記事はpandasの基的な使い方を解説するものではないので注意してください。 表形式ファイルを加工する必要がある方 pandasの強みはリレーショナルなデータ全般です。必ずしもデータ分析機械学習だけが守備範囲ではありません。 pandasとは pandasの公式ドキュメントの概要には、以下のように記載してあります。 pandas is a

    お前らのpandasの使い方は間違っている - Qiita
  • だから僕はpandasを辞めた【データサイエンス100本ノック(構造化データ加工編)篇 #1】 - Qiita

    データサイエンス100ノック(構造化データ加工編)のPythonの問題を解いていきます。この問題群は、模範解答ではpandasを使ってデータ加工を行っていますが、私達は勉強がてらにNumPyの構造化配列を用いて処理していきます。 次回記事(#2) はじめに Pythonでデータサイエンス的なことをする人の多くはpandas大好き人間かもしれませんが、実はpandasを使わなくても、NumPyで同じことができます。そしてNumPyの方がたいてい高速です。 pandas大好き人間だった僕もNumPyの操作には依然として慣れていないので、今回この『データサイエンス100ノック』をNumPyで操作することでpandasからの卒業を試みて行きたいと思います。 今回は8問目までをやっていきます。 今回使うのはreceipt.csvだけみたいです。初期データは以下のようにして読み込みました(データ型

    だから僕はpandasを辞めた【データサイエンス100本ノック(構造化データ加工編)篇 #1】 - Qiita
  • 1