並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 9 件 / 9件

新着順 人気順

seabornの検索結果1 - 9 件 / 9件

  • Python言語による実務で使える100+の最適化問題 | opt100

    指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー

    • 食べログ3.8問題に終止符を打つ

      import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json import glob import math from pathlib import Path from collections import Counter from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.model_selection imp

      • Python言語による実務で使える100+の最適化問題 | opt100

        はじめに 本書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 本書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. 本を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<本に記述>である. 作者のページ My HP 本書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ

        • 制御工学の基礎あれこれ

          In English ■初めに PID制御や現代制御などの制御工学(理論)の基礎や、制御工学に必要な物理、数学、ツール等について説明します。 私のプロフィールを簡単に説明しますと、私は自動車関連企業に勤めており、そこで日々制御工学(理論)を利用しながら設計開発をしております。 ここで説明する内容は、制御理論を扱い実際にモノに実装していく上で最低限理解しておいた方が良い内容と思います。 少しでも皆様の役に立ち、学力の底上げに貢献し、ひいては日本の発展、ひいては人類の発展に貢献できたらこの上ない喜びです。 内容を説明する際に次のことを心掛けています。 ① できるだけシンプルに。より少ない文章で内容を的確に説明する。 ② 1ページの記事のボリュームを多くし過ぎない ③ 文字のフォントは大きすぎず、行間を開けすぎない。(画面スクロールが頻繁になると情報が伝わりづらくなる) ④ 内容の説明とは直接関

          • ゼロから始める、データ分析と可視化 - Kyash Product Blog

            はじめまして。Kyashでデータエンジニアリングを担当しているKyashデータマンです。この記事では、Kyash社内のデータ分析の基礎に関するドキュメントを紹介します。 Kyashでは、データエンジニアリング・ガバナンス・セキュリティなど様々な角度から、公正なデータの取扱いと活用を推進しています。従来は、一部の訓練された技術者がデータ分析を一手に担っていましたが、社内でもデータ活用のニーズも多く、その担当者に分析や集計の業務が集中するという課題がありました。 この課題に対して、データへの適切なアクセス管理を行い、そして適切なBIツールを導入することで、データを取り扱う人が自分でデータ分析・そして活用できるようになることを目指しています。アクセス管理には、個人情報やそれに準ずる機密データに対して、ポリシータグによるアクセス権のコントロール、そしてアクセス権のリネージなどのソリューションの導入

              ゼロから始める、データ分析と可視化 - Kyash Product Blog
            • Python環境構築ベストプラクティス2019

              Python環境構築ベストプラクティス2019 Published at: 2019-02-18 / Updated at: 2019-05-14 Web上には新旧さまざまなPython環境の構築の方法が乱れており, 正しい情報にたどり着けない人がいて不憫なので2019年2月現在のベストプラクティスをPythonを使いたい人の属性ごとに紹介したいと思います. 自分がどのような環境を作ればいいかわかったなら公式ドキュメントというほぼ絶対的な1次資料を元に最高の環境を作っていきましょう. For Beginners とりあえずPythonを勉強してみたい, 手軽に手元にあるデータを解析してみたいという人はこちらです. プログラムをガリガリ書いていくのではない場合, 自分のPCに環境構築する必要はありません. Googleが提供しているColaboratoryを使いましょう. 苦労することなくP

              • システムソフトウェアに対する攻撃の歴史と傾向 - 高度標的型攻撃や国家に支援された攻撃の仕組み - - るくすの日記 ~ Out_Of_Range ~

                A History of system-level offensive security researches: How is your system compromised by nation state hacking, APT attack はじめに 企業や個人に対するサイバー攻撃の頻度は年々増加の一途を辿っているが、これらはskiddyによる悪戯程度の物から、企業を標的とした高度な標的型攻撃、あるいは政府による諜報活動に至るまで多岐にわたっている。 特に大規模な組織や政府による綿密に練られたサイバー攻撃は、確実に目的を果たすために高度な手段が講じられる事が多い。 本記事では高度標的型攻撃や政府による諜報活動で用いられる手法の一つとして、"システムソフトウェアに対する攻撃"について紹介する。 これはオペレーティングシステム (OS) や仮想マシン、ファームウェアといった基盤システムを

                  システムソフトウェアに対する攻撃の歴史と傾向 - 高度標的型攻撃や国家に支援された攻撃の仕組み - - るくすの日記 ~ Out_Of_Range ~
                • Pythonや機械学習、そして言語の競争について – 極めて主観的な見地から | POSTD

                  (訳注:2016/1/5、いただいた翻訳フィードバックを元に記事を修正いたしました。) よくある主観的で痛烈な意見を題名に付けたクリックベイト(クリック誘導)記事だろうと思われた方、そのとおりです。以前指導してくれた教授から教わったある洞察/処世術は、些細でありながら私の人生を変えるマントラとなったのですが、私がこの記事を書いたのはそれによるものです。「同じタスクを3回以上繰り返す必要があるなら、スクリプトを書いて自動化せよ」 そろそろ、このブログはなんだろうと思い始めているのではないでしょうか。半年振りに記事を書いたのですから。ツイッターで書いた Musings on social network platforms(ソーシャル・ネットワークプラットフォームについてじっくり考える) はさておき、この半年の間書き物をしていないというのはうそです。正確には、400ページの 本 を書きました。

                    Pythonや機械学習、そして言語の競争について – 極めて主観的な見地から | POSTD
                  • 【Python】 機械学習の可視化が捗るライブラリ「Yellowbrick」 - フリーランチ食べたい

                    機械学習Podcast「TWiML&AI」で先週取り上げられた可視化ライブラリ「Yellowbrick」が非常に便利だったので紹介します!ちなみにPodcastには作者の1人であるRebecca Bilbroさんが出演しているので興味持った方は是非聞いてみてください。 twimlai.com www.scikit-yb.org Yellowbrickとは 一言で言うと、機械学習に特化した可視化ライブラリです。実装的な面で言うと(こちらの方がわかりやすいかもしれません)、scikit-learnとmatplotlibをラップして、scikit-learnライクなAPIで使うことができるものです。 例えば相関行列のヒートマップをプロットしたい場合は次のように書くだけでグラフを作ることができます。 visualizer = Rank2D(features=features, algorithm=

                      【Python】 機械学習の可視化が捗るライブラリ「Yellowbrick」 - フリーランチ食べたい
                    1