この場合の確率を全て表すには、全ての連続区間での確率を求めることになる。次の電話が a - b 時間後になる確率は次の式で表せる: 累積分布関数 FX を で定めれば、 のように、一変数関数で分布を表現できるので便利である。さらに、FX の導関数 fX は確率密度関数と呼ばれ、確率は積分を用いて と書ける。 通常、連続値をとる確率変数の分布は確率密度関数を用いて記述される。なぜなら、確率密度関数は初等関数で書けるが、累積分布関数は書けない場合が多いからである。 公理主義的な確率論においては、d次元ベクトル値確率変数の確率分布とは、その確率変数の引き起こす像測度のことである。この測度は d次元ユークリッド空間上の確率測度であり、ユークリッド空間の部分集合に対して、確率変数の値がその集合に入る確率を与える関数となる。 単に確率分布というときは、d次元ユークリッド空間などのよく使われる可測空間上