ベイズ推定(ベイズすいてい、英: Bayesian inference)とは、ベイズ確率の考え方に基づき、観測事象(観測された事実)から、推定したい事柄(それの起因である原因事象)を、確率的な意味で推論することを指す[1]。 ベイズの定理が基本的な方法論として用いられ、名前の由来となっている。統計学に応用されてベイズ統計学[2]の代表的な方法となっている。 ベイズ推定においては、パラメータの点推定を求めることは、ベイズ確率(分布関数)を求めた後に、決められた汎関数:の値(平均値もしくは中央値など)を派生的に計算することと見なされる。 標語的には、「真値は分布する」、「点推定にはこだわらない」などの考え方に依拠している。 いま、AおよびXを離散確率変数とする。ここで A を原因、X をそれに対する証拠(つまり原因によって起きたと想定される事象)とするとき、 P(A) = 事象 A が発生する
Toggle Inference over exclusive and exhaustive possibilities subsection
Paul Meehl has argued that the epistemological importance of the choice of null hypothesis has gone largely unacknowledged. When the null hypothesis is predicted by theory, a more precise experiment will be a more severe test of the underlying theory. When the null hypothesis defaults to "no difference" or "no effect", a more precise experiment is a less severe test of the theory that motivated pe
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く