タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

*algorithmと*mathと--に関するsh19910711のブックマーク (2)

  • グラフ信号処理におけるサンプリングと復元 - 甲斐性なしのブログ

    はじめに グラフ信号処理に関する日語の書籍が昨年発売された。 グラフ信号処理の基礎と応用: ネットワーク上データのフーリエ変換,フィルタリング,学習 (次世代信号情報処理シリーズ 5) 作者:田中 雄一コロナ社Amazon 記事ではその中で解説されているグラフ信号のサンプリングと部分空間情報を利用した復元について簡単にまとめた上で、実際に試てみた際のコードと結果を紹介する。 グラフ信号処理の諸概念 グラフ信号 グラフ信号は下図のようにグラフの各頂点上に値を持つ信号である。 このような頂点上に値を持つグラフの例としては、空間上に配置された複数のセンサーが挙げられる。これは、近くにあるセンサー同士が辺でつなげば、その計測値はグラフ信号とみなせる。それ以外にも、路線図と各駅の人口、SNSのつながりと各ユーザの特性(年齢などの何らかの数値)等々、グラフ信号としてモデル化できる現実の事象は様々存

    グラフ信号処理におけるサンプリングと復元 - 甲斐性なしのブログ
    sh19910711
    sh19910711 2024/05/13
    "グラフ信号としてモデル化できる現実の事象は様々 + 時系列信号や画像も時刻、画素を頂点とし近傍を辺でつなげばある種のグラフとみなせる / 「グラフ信号処理の基礎と応用: ネットワーク上データのフーリエ変換 ~ 」"
  • 数学的バックグラウンドが無い人は理論を勉強しようと思っても厳しい - studylog/北の雲

    という事を痛切に悟りました。無理・無茶です。2015に出たLSTMとかCNNの教科書的の段階ならば、自分みたいな人間でも頑張って青読んでも何とか理解できました。でもそのレベルでは特に自然言語処理関係であまり実用的なモノは作れません。LSTMで言語モデル作って文章出力して「知性!(実際はワードサラダ)」とか言ってた牧歌的な時代はもうとうの昔に過ぎ去りました。数学的バックグラウンドが無いと最新論文見ても何がなんだかわかりません。論文を簡単に説明してくれているブログ記事を読んでも理解できなくなってきました。片手間では無理ですね。 理論を理解するのは諦めて、他の人の成果物(論文)を誰かがコード実装してくれてそれを使ってなんかやるっていう方向性に特化しないと全部中途半端になっちゃうでしょう。最低限CNNの畳み込み・フィルタとかDropoutとかそのレベルぐらいまでは理解しないと誰かが書いたコードす

    数学的バックグラウンドが無い人は理論を勉強しようと思っても厳しい - studylog/北の雲
    sh19910711
    sh19910711 2023/03/23
    2016 / "LSTMで言語モデル作って文章出力して「知性!(実際はワードサラダ)」とか言ってた牧歌的な時代 / 2006だが2007ぐらいに作られたweb2.0的なモノってもうほぼ淘汰された + 淘汰されちゃったモノ達は立派に隙間を埋めた"
  • 1