1. LogをS3と Hive Redshi/ に 格納する仕組み 2013年5月22日 株式会社ゆめみ 森下 健 mokemokechicken@twi;er 1 2. 作るきっかけ アプリケーションログをMySQLに保存している (調査目的) MySQLだとスケールしない S3やHadoop(Hive)上に保存しよう (スケールしそう) 2 100〜200Write/sec くらいでキツイ
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 2011/02/22 [登壇後エントリ] :" 「モバゲーの大規模データマイニング基盤におけるHadoop活用」-Hadoop Conference Japan 2011 #hcj2011 で登壇してきました " http://d.hatena.ne.jp/hamadakoichi/20110222/p1Read less
Hadoopは、グーグルが検索エンジン用に開発したバッチ処理システムを基に開発された、オープンソースソフトだ。グーグルが開発した分散ファイルシステム「Google File System(GFS)」を模した「Hadoop Distributed File System(HD FS)」と、データ処理機構「MapReduce」を模した「Hadoop MapReduce」で構成する。 米国では米VISAや米JPモルガン・チェースのような大手金融機関が、バッチ処理にHadoopを使用する。 そのHadoopがいよいよ、日本企業でも使われ始めた。例えば楽天は、ある商品に対するお薦め商品をリストアップする「レコメンド処理」にHadoopを使用する。NTTデータは、全国の渋滞情報をリアルタイムに可視化するシステムの構築にHadoopを採用した。三菱UFJインフォメーションテクノロジーもHadoopを使っ
業界トップ のエンタープライズ Hadoop 企業 Cloudera に入社しました http://www.cloudera.co.jp/ 今年の6月に、「平成21年度 産学連携ソフトウェア工学実践事業報告書」というドキュメント群が経産省から公表されました。 そのうちの一つに、NTTデータに委託されたHadoopに関する実証実験の報告書がありましたので、今更ながら読んでみることにしました。 Hadoop界隈の人はもうみんなとっくに読んでるのかもしれませんけど。 http://www.meti.go.jp/policy/mono_info_service/joho/downloadfiles/2010software_research/clou_dist_software.pdf 「高信頼クラウド実現用ソフトウェア開発(分散制御処理技術等に係るデータセンター高信頼化に向けた実証事業)」という
ビジネスデータを分析するビジネスインテリジェンス(BI)分野の新たなプラットフォームとして注目されているHadoop。Hadoopでは、どのようなデータ分析が可能なのでしょうか? 現在、Hadoopビジネスの牽引役であるClouderaのJeff Hammerbracher氏が、Hadoopでデータ分析が可能なビジネス上の課題を示した「10 Common Hadoop-able problems」(Hadoop化可能な10の一般的課題)と題したプレゼンテーションを公開しています。 Hadoopにとって得意な処理とは、複雑で複数のデータソースからなる大量のデータの分析であり、それをバッチ処理の並列実行によって実現することです。 従来は、データがあまりに複雑だったり膨大だっために、計算時間やコストなどの理由で実現が難しかった処理でも、Hadoopによる低コスト化、計算時間の短縮、高い柔軟性など
8月に入社した佐々木です。こんにちわ! 入社してからはHadoopを使うことが多く、日々、大規模データと格闘しています。大変ではありますが、個人ではなかなか触ることが出来ないような大規模データを触れるのは楽しいです。 さて、Hadoopは最近色々なところで使われ始めてきていると思うんですが、実際に利用してみて困った事やtipsなど、実践的な情報はまだあまり公開されていません。その辺の情報をみんな求めているはず…!! そこで、僕が実際に触ってみて困った事やHadoopを使う上でポイントだと思ったことなどを社内勉強会で発表したので公開してみます。Hadoopを使っている(使いたいと思っている)方の参考になれば幸いです。 [slideshare id=2711363&doc=20091214techblog-091213183529-phpapp02] Hadoopの利用はまだまだ試行錯誤の連続
ちなみに、この分析のために必要とされるMapReduceのコードであるが、そのサイズはわずか20ステップだという。Yahoo!のプレゼンテーターである、エリック・バルデシュバイラー氏によると、たとえ経験の浅いエンジニアであっても、MapReduceによるプログラミングは可能であるとされる。 また、VISAのジョー・カニンガム氏からも、貴重なデータが提供されていたので以下に紹介する。同社では、1日に1億トランザクションが発生するため、2年間で700億強のトランザクションログが蓄積され、そのデータ量は36テラバイトに至るという。こうしたスケールのデータを、従来のRDBを用いて分析するには、約1カ月の時間が必要とされてきたが、Hadoopを用いることで13分に短縮されたという。 これまでは、Yahoo!にしろVISAにしろ、膨大なデータをRDBに押し込むほかに方法はなく、その分析に数十日を要する
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く