次回のCVIM勉強会でmean-shiftについて話すことになってしまったので、理解のためにmean-shiftアルゴリズムを実装してみた。 カーネルは一番簡単なフラットカーネルを利用し、また画像もグレイスケール画像のみを扱うためピクセルの値は[0,256]の一次元データとみなす。 またナイーブな実装だと512*512ぐらいの画像でもすごい時間がかかるので二分探索とFenwickTree(動的に更新する必要はないので別に使う必要なかった、累積和を保存した配列に変更)を使ってグレイスケール画像かつフラットカーネルであることを利用して高速化した関数meanShiftLoopFastを用意した。 元画像は下のようになっている。 bandWidth=10のときは下のようになり、肌の部分が同じ値に収束していることがわかる。 bandWidth=20のときは以下のようになり、やや平滑化されすぎているこ