物理に関するsillandaのブックマーク (9)

  • 量子力学に「観測問題」は存在しない|Masahiro Hotta

    前世紀には観測問題を論じる人が多かったのですが、標準的な量子力学にはそのような観測問題はなかったことが現在では分かっております。例えば以下のように理解されています。 (1)波動関数の収縮について: 量子力学は情報理論の一種であり、波動関数は古典力学の粒子のような実在ではなく、情報の集まりに過ぎません。測定によって対象系の知識が増えることで、対象系の物理量の確率分布の集まりである波動関数も更新されるのが波動関数の収縮です。 「系を観測をすると、その波動関数(または状態ベクトル)は収縮し、その変化はシュレディンガー方程式に従わない」と聞いて、前世紀の「観測問題」に目覚めてしまって、「波動関数とは?収縮とは?」と懊悩してしまっている物理学徒は、まず箱の中の古典的なサイコロの目の確率を考察してみて下さい。 各目の出る確率は1/6で、一様分布でしたが、箱をとってサイコロを観測して3の目が出ていれば、

    量子力学に「観測問題」は存在しない|Masahiro Hotta
  • 宇宙が膨張しているのは小さな「赤ちゃん平行宇宙」を飲み込んで吸収しているからとの新理論が発表される、現行の宇宙論より正確に観測結果と合致

    宇宙は加速度的に膨張を続けており、そのことはジェイムズ・ウェッブ宇宙望遠鏡による観測でも裏付けられています。宇宙の膨張を加速させている力の候補として、ダークエネルギーの存在が示唆されていますが、新しく「別の宇宙を吸収して膨らんでいるから」とする説が提唱されました。 Is the present acceleration of the Universe caused by merging with other universes? - IOPscience https://iopscience.iop.org/article/10.1088/1475-7516/2023/12/011 Our universe is merging with 'baby universes', causing it to expand, new theoretical study suggests | Liv

    宇宙が膨張しているのは小さな「赤ちゃん平行宇宙」を飲み込んで吸収しているからとの新理論が発表される、現行の宇宙論より正確に観測結果と合致
  • エントロピーとは何か

    「エントロピー」という概念がよくわかりません。 - Mond https://mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy https://b.hatena.ne.jp/entry/s/mond.how/ja/topics/25cvmio3xol00zd/t242v2yde410hdy 「エントロピー」は名前自体は比較的よく知られているものの、「何を意味しているのか今一つ分からない」という人の多い概念である。その理由の一つは、きちんと理解するためには一定レベルの数学的概念(特に、微積分と対数)の理解が必要とされるからであろう。これらを避けて説明しようとしても、「結局何を言いたいのかすっきりしない」という印象になってしまいやすい。 「エントロピー」を理解し難いものにしているもう一つの理由は、「エントロピー」という概念が生まれた歴史的経緯

    エントロピーとは何か
  • ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー

    宇宙はブラックホールに見つめられているのかもしれません。 米国のシカゴ大学(University of Chicag)で行われた研究によって、ブラックホールそのものに、量子世界の不思議な現象である「重ね合わせ」を破壊する効果がある可能性が示されました。 量子は「シュレーディンガーの」に代表されるような観測するまで状態が確定しない、複数の可能性の「重ね合わせ」状態となっています。 重ね合わせが破壊された量子は「どこにでもいる」状態から「ここにしかない」状態に変化し、人間の直感に反しない「現実的」な動きをとるようになります。 研究者たちは、宇宙がブラックホールを目のように使って、自分の内側を観測している可能性があると述べています。 宇宙に意識があるかはさておき、宇宙現象そのものが観測者の役割を果たすという考えは非常に先進的なものといえます。 しかし、重力の化け物であるブラックホールのどこに、

    ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー
  • 世界初「ポータブル量子コンピュータ」が発売。2量子ビットで118万8,000円より

    世界初「ポータブル量子コンピュータ」が発売。2量子ビットで118万8,000円より
  • 光を圧縮していくと”存在確率が重なって逆に圧力が下がる”現象を確認 - ナゾロジー

    注射器やピストンに閉じ込めた空気を押し潰していくと、はじめは簡単に圧縮できますが、押せば押すほどさらに力が必要になってきます。 しかし閉じ込めたのもが空気ではなく光子の場合は少し違うようです。 ドイツのボン大学(University of Bonn)で行われた研究によれば、小箱に光子を入れて力をかけて圧縮していくと、ある瞬間からほとんど抵抗がなくなっていく様子が実験的に確認された、とのこと。 しかし、いったいどうして光は途中から圧縮に必要な力が減るのでしょうか? 研究内容の詳細は2022年3月24日に『Science』にて掲載されました。

    光を圧縮していくと”存在確率が重なって逆に圧力が下がる”現象を確認 - ナゾロジー
  • 「宇宙には始まりなどなかった」との指摘、ビッグバンの前から宇宙は無限に続いていたという新説とは?

    一般相対性理論では、宇宙は今から約138億年前に発生したビッグバンでできたとされていますが、一般相対性理論ではビッグバンで急膨張する前に宇宙が一点に凝縮されていた「特異点」について説明できません。この問題に取り組む科学者らが2021年9月24日に、「宇宙にはそもそも始まりがない」とするアプローチを提唱しました。 [2109.11953] If time had no beginning https://arxiv.org/abs/2109.11953 What if the universe had no beginning? | Live Science https://www.livescience.com/universe-had-no-beginning-time 原子より小さいミクロの世界から、広大な宇宙までを全て解明できる理論は記事作成時点では登場していないため、現代の物理学者

    「宇宙には始まりなどなかった」との指摘、ビッグバンの前から宇宙は無限に続いていたという新説とは?
  • 100年以上も低温下の現象とされた「超伝導」を室温で発生させることに成功

    By Argonne National Laboratory 「超伝導」とは特定の金属や化合物を冷却した際、その物質の電気抵抗がゼロになるという現象です。超伝導が発見された1911年以来、超伝導は「低温下で発生するもの」とされ、最高でも摂氏マイナス23度の環境下で発生していました。しかし、アメリカ・ロチェスター大学の研究チームにより、超伝導が室温でも発生することが明らかになりました。 Room-temperature superconductivity in a carbonaceous sulfur hydride | Nature https://www.nature.com/articles/s41586-020-2801-z For The First Time, Physicists Have Achieved Superconductivity at Room Temperat

    100年以上も低温下の現象とされた「超伝導」を室温で発生させることに成功
  • 宇宙は場所によって物理定数が異なることが判明! 宇宙人はいないの? - ナゾロジー

    これまで私たちは、「宇宙は全方位に向かって均質であり、宇宙のどこでも物理定数は不変」だと考えてきました。 ですが近年の度重なる天文学的な測定により、この宇宙を規定するはずの物理定数が、宇宙の異なる場所では違っていることを示唆する結果がもたらされています。 そこで研究者は決定的な結論を得るために、銀河の様々な地点に存在する、クエーサー(非常に活動的なブラックホール)から発せられる電磁波を観測し、宇宙各地の電磁気力の強さを決める定数(微細構造定数)を測定しました。 結果は驚くべきもので、宇宙の一方では電磁気力が強く、また逆の方向では電磁気力が弱くなっていたのです。 これは単に宇宙に方向性があるということだけを意味するものではありません。 電磁気力は原子核が電子を引き留める力です。これが宇宙の場所によって異なるということは、同じ水素や酸素であっても、宇宙の端(高電磁気区域)と端(低電磁気区域)で

    宇宙は場所によって物理定数が異なることが判明! 宇宙人はいないの? - ナゾロジー
  • 1