タグ

ブースティングとbaggingに関するsimakawaのブックマーク (1)

  • Rと集団学習

    集団学習(ensemble learning)は、決して精度が高くない複数の結果を統合・組み合わせることで精度を向上させる機械学習方法である。複数の結果の統合・組み合わせの方法としては、分類問題では多数決、数値の予測(回帰)問題では平均が多く用いられている。 集団学習では、異なる重み、あるいは異なるサンプルから単純なモデルを複数作成し、これらを何らかの方法で組み合わせることで、精度と汎化力を両立するモデルを構築する。 稿では、集団学習方法による、回帰・分類のアルゴリズムバギング(bagging)、ブースティング(boosting)、ランダム森(random forest)の基概念およびこれらのRのパッケージと関数を紹介する。 機械学習の問題では、学習によって回帰・分類を行うシステムを学習機械と呼ぶ。文献によっては学習機械を仮説(hypothesis)、分類器・識別器(classi

  • 1