技術開発の進展により加速度的に進化しているAI(人工知能)。このAIという言葉とともに語られているのが、機械学習やディープラーニングだ。AIと機械学習、そしてディープラーニングの違いとは何なのか。 1.はじめに 最近、ニュースや書籍などでAIという言葉を見聞きすることが多い。人手不足の救世主のように扱われたり、人の仕事を奪う悪魔のように書かれるが、その実体はいまひとつ分かりにくい。ましてや、自分の携わっている仕事に対して、具体的に何をしてくれるのかが分からないという声をよく聞く。 もう1つややこしいのは、その呼び名である。AI、機械学習、ディープラーニング、それぞれが何のことなのか、どんな関係なのか不明なまま、なんとなく人に聞けなくて腑に落ちない。この記事では機械学習を中心に、その実体を説明したい。 2.AIとは AIとはArtificial Intelligenceの略、日本語にすれば人
AI(人工知能)に関わる技術、なかでもディープラーニングが急速に発達し、社会のさまざまな領域で実際に利用されるようになりました。その背景のひとつには、AI分野での研究開発に多大な投資を行っている大手IT企業が、その成果の一部をオープンソースとして公開し、世界中のエンジニアが自由に使えるようになったことがあります。 こうしたオープンソースのAI関連ライブラリには、Googleの「TensorFlow」やFacebookの「Torch」といった海外のIT企業のものだけでなく、国内にもPreferred Networksの「Chainer」やソニーの「Neural Network Libraries」などがあります。最近では、関連した情報も数多く手に入るようになりました。 また、これらのライブラリの多くには親切なチュートリアルも用意されており、AIの開発経験がないエンジニアでもさほど手間を掛ける
Googleは、脳の活動を模したニューラルネットワークによって学習を実現する「ディープラーニング」をサポートした機械学習ライブラリ「TensorFlow」をオープンソースで公開しました。ライセンスはApache 2.0オープンソースラインセンスです。 Googleはすでに数年前からディープラーニングを同社のサービスに組み込んでいます。「私たちが社内でディープラーニングの基盤である「DistBelief」を開発したのは2011年のことだ」(ブログ「TensorFlow - Google’s latest machine learning system, open sourced for everyone」から)。 TensorFlowは、このDistBeliefをさらに強化したものだと説明されています。 TensorFlow is general, flexible, portable, e
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く