Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
      
  
  
  はじめに 千葉大学/Nospareの米倉です.今回は,統計学・機械学習周辺で,僕が良いと思ったチュートリアル/サーベイ論文と講義ノートを簡単なコメント付きで紹介したいと思います.チュートリアル論文やサーベイ論文は,そのトピックの解説や教育面にフォーカスしていて,何か勉強したり,網羅的に把握するときに非常に便利だと個人的に思います.また公開されている講義ノートの中には非常に勉強になるものが多くあります.内容は僕が興味があるトピックに偏っています.またすべて無料で読めます.(教科書等の海賊版みたいなのは載せていません) 10本の紹介 Nickl "STATISTICAL THEORY" Nicklの統計学の講義ノートです.いわゆるM推定量の漸近的性質に加え,バーンスタイン・フォンミーゼズ定理等も証明付きで解説されており,上級レベルの数理統計学を学ぶのに重宝すると思います. Doucet and
      
  オミータです。ツイッターで人工知能のことや他媒体の記事など を紹介していますので、人工知能のことをもっと知りたい方などは @omiita_atiimoをご覧ください! 他にも次のような記事を書いていますので興味があればぜひ! 【2020決定版】スーパーわかりやすい最適化アルゴリズム -損失関数からAdamとニュートン法- ついにAdamを超えた!最新の最適化アルゴリズム「RAdam」解説 新たな活性化関数「FReLU」誕生&解説! 2019年最強の画像認識モデルEfficientNet解説 画像認識の大革命。AI界で話題爆発中の「Vision Transformer」を解説! 出きたてホヤホヤ!最新オプティマイザー「AdaBelief」を解説! SGD+Momentum(緑)とAdam(赤)とAdaBelief(青)の比較。青が一番早く収束していることがわかります。 "AdaBelief
      
  概要 pythonからOpenCVのテンプレートマッチ及びGUI操作モジュールを使うことで、 webブラウザ上の麻雀牌をBOTに認識・クリック操作させることができ、プレイの自動化ができました。 また、どの麻雀牌をクリックするかのロジック部分には機械学習を用いました。 テンプレートマッチの探索用画像を差し替えれば雀魂に限らず他の麻雀ゲーム全般で利用可能であり、機械学習の部分を変えれば、特定条件下で合理的選択を繰り返し求められるようなゲーム全般で応用が可能です。 ※内容理解の一助とするために記事内随所に雀魂のゲーム内画像を利用していますが、著作権保護等の観点から強いボカシを入れています。 対象読者 (麻雀が好きで)機械学習を触ってみたい人 WindowsやGUI操作の自動化に興味があるけどOpenCVって何だろうって人 雀魂は好きだけど試練イベント走るのがマジ試練すぎて心が折れた人 過去に大学
      
  概要 Google翻訳APIをPythonで実行するでは、四苦八苦しながらも、Google翻訳APIにより、テキストファイルに書かれた英文を日本語に翻訳するPythonスクリプトを書いた。 元々の動機は論文の翻訳する際に、ちまちまGoogle翻訳にコピペするのが面倒くさいということであった。 そこで今回は、Pythonスクリプトを拡張し、PDFの論文を一気に翻訳するようにしたので共有したい。 そもそもなんで日本語に翻訳して論文を読むの? もちろん、細かい内容は原文を精読する必要がある。そりゃそうだ。 日本語で読む理由はなんといっても、論文の内容を俯瞰的に把握できるということに尽きる。 俯瞰的に把握できることで、以下のメリットがある。 俯瞰的に把握した上で原文を読むことになるため、より早く理解することができる。 俯瞰的に把握できるため、原文を読む前に、自分にとって読む必要がある論文かどうかか
      
  scikit-learnライブラリを用いて、機械学習の実装とアルゴリズムをバランス良く学んでいただく書籍を執筆しました。 AIエンジニアを目指す人のための機械学習入門 実装しながらアルゴリズムの流れを学ぶ(電通国際情報サービス 清水琢也、小川雄太郎 、技術評論社) https://www.amazon.co.jp/dp/4297112094/ 既に発売開始しています。 機械学習の ・各種アルゴリズムの実装 ・それぞれのアルゴリズムの動作の仕組み これらを学んでみたい方に向けて執筆いたしました。 ご活用いただければ幸いです。 昨年書いた書籍 つくりながら学ぶ! PyTorchによる発展ディープラーニング(小川雄太郎、マイナビ出版) の、機械学習版のような位置付けです。 本記事では、 ・本書を書いたモチベーション ・本書の概要 ・本書の目次 を紹介いたします。 本書を書いたモチベーション 本書
      
  はじめに 機械学習を使ったチャットボットの仕組みを理解するために、テキストを訓練データとする簡単なニューラルネットワークを作成した際の備忘録。 目的 英文テキストで作成したルールベース型チャットボットを、日本語テキストにも適用して動作させること。日本語テキストを前処理し、それをニューラルネットワークへ通せることを確認する。訓練データとして、Niantic社の"Pokemon GO"に関連したサポートページをWebスクレイピングしたものを使用した。 Nianticサポートページ 使用しているCSVファイル(GitHub) マルチクラス分類 予め用意された応答文を入力にあわせて返す「ルールベース型」を参考に、"Intents"(意図)を識別して予測するマルチクラス分類の部分までを形にした。 「生成型」ではなく、入力情報から関連した「よくある質問(FAQ)」を予測するものであるため、”RNN”で
      
  背景 Qiita殿堂入り記事ランキングを作った物語のつづき。 前回の投稿は以下を参照: Qiita殿堂入り記事ランキングを作った物語 今回は、その第二の目的、記事の分析結果についてお伝えする。 全部の分析が済んでから公開する予定だったが、 途中段階でもかなり興味深い結果もあったため、 データ取得時から日数がたって鮮度が落ちないうちに公開したいと思った。 本投稿の内容 直近1年=2017年6月~2018年5月の投稿とする。 過去記事の方が、平均いいね値が数倍高くなる傾向を、前回述べた。 ご参考: Qiita殿堂入り記事ランキングを作った物語 2018年5月いいね平均= 6.9 2017年6月いいね平均= 8.1 (ここまでの期間を対象) 2016年6月いいね平均=15.6 (仕様変更も影響.。もっと前はより差が大きい) そのため、あまり長期間にわたっての分析は望ましくない。 また、技術の
      
  こんにちは。理系大学院で修業中のスーパーケロケロです。趣味で自然言語解析(NLP)の勉強をしています。最近、テキストに含まれた情報を有向グラフに変換するPythonライブラリーnaruhodoを作ったので、ライブラリーの紹介も兼ねて、テキストを有向グラフに変換する話を少ししてみたいと思います。 naruhodoのGithubリポジトリはこちら、最新バージョンはです。 自然言語解析の流れ 自然言語解析を料理に例えれば、入力されたテキストは収穫待ちのコムギのようで、そのままでは使えない。このコムギを形態素解析で脱殻し(形態素単位で分離)、さらに词类(Part-Of-Speech)や依存構造解析で小麦粉にしてから(文法情報の付与)、ようやくパンのような美味しい食べ物が作れる(実際の応用)。 テキストが処理されるごとに、使える情報が増えて、応用の幅が広げるわけです。 文=>木、文章=>有向グラフ
      
  リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く