リンクしないけど、0の0乗がゼロ除算同様未定義であるというような記事がブクマを集めていてなんか困るよなぁと思って書いた。 前提として である。 $x^y$ は、$(0,0)$ で不連続になっているので、極限を根拠に $0^0$ を定めるとすると、不定とか定義されないとか、そういうことになる。 これは未定義のほうが好ましいかもしれない理由のひとつにはなるけれど、決して決定的ではない。 連続性を根拠にするのは、一見未定義であっても連続性を保つように定義できれば幸せになるからだと思う。 とはいえ。 $x^y$ の $(0,0)$ における連続性と、$0^0$ の値は、別の話だ。 どうやっても連続性が保てないからといって、よい定義が存在しないという事にはならない。 というわけで、$0^0$ が時折現れる世界をより住みやすくするためにはどうすればいいのかを考える。 ゼロ除算のように未定義にするのがよ