タグ

Mathematicsに関するsotukenyouのブックマーク (11)

  • Categorizing Normal and Pathological Voices: Automated and Perceptual Categorization

  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
  • Account Suspended

    Account Suspended This Account Has Been Suspended

  • 学術機関リポジトリ構築連携支援事業 │ 機関リポジトリ一覧

    このページは閉鎖されました。今後は以下をご利用ください。 IRDB>機関リポジトリ一覧 https://irdb.nii.ac.jp/repositorylist IRDB(学術機関リポジトリデータベース)がハーベストを行っている機関リポジトリの一覧です。 JPCOAR>会員機関 https://jpcoar.repo.nii.ac.jp/page/40 JPCOAR(オープンアクセスリポジトリ推進協会)の会員機関一覧です。JAIRO Cloudを利用している機関リポジトリの情報を含みます。

  • 微分方程式を図解する

    物理では(実は物理によらず、いろいろな場面では)「微分方程式を解く」必要があることが多い。なぜなら、物理法則のほとんどが「微分形」で書かれているからである。「微分形で書かれている」というのは「微小変化と微小変化の関係式で書かれている」と言ってもよい。物理の主な分野における基礎方程式は、運動方程式 を初めとして、微分方程式だらけなのである。 微分方程式を解くには、積分という数学的技巧が必要になる。そのため「ややこしい」と嫌われる場合もあるようだ。 計算ではなく図形で「微分方程式を解いて関数を求める」というのはどういうことなのかを感じていただけたらと思い、アニメーションプログラムを作った。ただ計算するのではなく、「何を計算しているのか」をわかった上で計算のテクニックを学んだ方が理解は深まると思う。 ここでは微分方程式の中でも一番単純な「一階常微分方程式」を考える。「一階常微分方程式を解く」とは

  • 標準誤差 - Wikipedia

    標準誤差(ひょうじゅんごさ、英: standard error; SE)は、母集団からある数の標を選ぶとき、選ぶ組み合わせに依って統計量がどの程度ばらつくかを、全ての組み合わせについての標準偏差で表したものをいう。 統計量を指定せずに単に「標準誤差」と言った場合、標平均の標準誤差(英: standard error of the mean; SEM)のことを普通は指す。以下ではこれについて述べる。 定義[編集] 標準偏差σ、要素数Nの母集団からn個の標を抽出するとき、標準誤差は次の式により推定される。

  • 畳み込み - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "畳み込み" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2016年7月) 2つの正方形による畳み込み。解として得る波形は三角波となる。黄色の領域で示されている面積が2つの方形波の合成積である。 正方形がRC回路に入力された場合の出力信号波形を得るために、RC回路のインパルス応答と方形波の畳み込みを行っている。 黄色の領域で示されている面積が合成積である。 畳み込み(たたみこみ、英: convolution)とは、関数 g を平行移動しながら関数 f に重ね足し合わせる二項演算である。あるいはコンボリューションとも呼ばれる。 定義[編集]

    畳み込み - Wikipedia
  • カーネル密度推定 - Wikipedia

    正規分布の100個の乱数と異なる平滑化帯域幅によるカーネル密度推定。 カーネル密度推定(カーネルみつどすいてい、英: kernel density estimation)は、統計学において、確率変数の確率密度関数を推定するノンパラメトリック手法のひとつ。エマニュエル・パルツェン(英語版)の名をとってパルツェン窓(英: Parzen window)とも。大まかに言えば、ある母集団の標のデータが与えられたとき、カーネル密度推定を使えばその母集団のデータを外挿できる。 ヒストグラムは、一様なカーネル関数によるカーネル密度推定量と見ることもできる。 定義[編集] x1, x2, ..., xn を(未知の)確率密度関数 ƒ を持つ独立同分布からの標とする。カーネル関数 K、バンド幅(平滑化パラメータ)h のカーネル密度推定量(英: kernel density estimator)とは を採用

    カーネル密度推定 - Wikipedia
  • 共役勾配法 - Wikipedia

    線型方程式の二次形式を最小化するための、最適なステップサイズによる最急降下法(緑)の収束と共役勾配法(赤)の収束の比較。共役勾配法は、厳密にはn次の係数行列に対して高々nステップで収束する(ここではn=2)。 共役勾配法(きょうやくこうばいほう、英: conjugate gradient method、CG法とも呼ばれる)は対称正定値行列を係数とする連立一次方程式を解くためのアルゴリズムである[1][2][3][4]。反復法として利用され[1][2][3][4]、コレスキー分解のような直接法では大きすぎて取り扱えない、大規模な疎行列を解くために利用される。そのような問題は偏微分方程式などを数値的に解く際に常に現れる[1][5][6][7]。 共役勾配法は、エネルギー最小化などの最適化問題を解くために用いることもできる[8][9][10]。 双共役勾配法(英語版)は、共役勾配法の非対称問題へ

    共役勾配法 - Wikipedia
  • 固有値と固有ベクトル - Wikipedia

    モナ・リザの画像(左図)を平行四辺形に線形変換した画像(右図)。この線形変換において、画像の中にある右向きの矢印(青色)は変化していないのに対し、上を向いた矢印(赤色)は方向が変化している。この青い矢印がこの変換における固有ベクトルであり、赤い矢印は固有ベクトルではない。ここで青い矢印は伸張も収縮もしていないので、この固有値は 1 である。このベクトルと平行なすべてのベクトルは固有ベクトルである。零ベクトルも含めて、これらのベクトルはこの固有値に対する固有空間を形成する。 数学の線型代数学において、線型変換の固有値(こゆうち、英: eigenvalue)とは、零ベクトルでないベクトルを線型変換によって写したときに、写された後のベクトルが写される前のベクトルのスカラー倍になっている場合の、そのスカラー量(拡大率)のことである。この零ベクトルでないベクトルを固有ベクトル(こゆうベクトル、英:

    固有値と固有ベクトル - Wikipedia
  • 離散フーリエ変換 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年12月) 離散フーリエ変換(りさんフーリエへんかん、英語: discrete Fourier transform、DFT)とは次式で定義される変換で、フーリエ変換に類似したものであり、信号処理などで離散化されたデジタル信号の周波数解析などによく使われる。また偏微分方程式や畳み込み積分の数値計算を効率的に行うためにも使われる。離散フーリエ変換は(計算機上で)高速フーリエ変換(FFT)を使って高速に計算することができる。 離散フーリエ変換とは、複素関数 を複素関数に写す写像であって、次の式で定義されるものを言う。 ここで、Nは任意の自然数、 はネイピア数、 は虚数単位 ()[注 1]で、は円周率である。この

  • 1