タグ

ブックマーク / www.ajimatics.com (4)

  • 無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス

    一般に、境目は大事です。どこまでが友人で、どこからが恋人なのか、とか。 この記事は「好きな証明」アドベントカレンダー1日目の記事です。 上記の式のことを考えます。今回はは正の実数とします。そのが無限に乗じられているわけです。一見面らってしまう見た目をしていますが、という列の極限として捉えられる、と考えればそこまで異常な概念でもないと思います。あるいは、この式全体を「」とでも置けば与式はと閉じた見た目にできるので怖くないです。(※極限値があると仮定) さて、当然のこととして、に値を入れてみたときにこの式がどう振る舞うのか知りたくなるのが人情です。とりあえず試しにだとしてみましょう。これはすなわち「」のことなわけですが、これはまあ1を何回乗じても1なのでも1になると予想がつくでしょう。 今度はだとしてみます。という数列は、実際に計算するととなり、明らかに発散(いくらでも大きくなる)しそうな雰

    無限べき乗a^a^a^...の収束と発散との境目が気になる - アジマティクス
  • 日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス

    Q:これは何の構造を表しているでしょう? グラフ理論 上の構造のように、頂点(ノードともいいます)の集まりと、2つの頂点をつなぐ辺(エッジともいいます)の集まりでできたもののことを「グラフ」あるいは「ネットワーク」と呼び*1、このような構造を研究する分野こそが「グラフ理論(Graph theory)」です。今回はそんなグラフを使うと、身近なものの新たな側面が見えてくる話。 (余談ですが「グラフ」という用語は、数学だと関数のグラフとか円グラフみたいなやつもあって検索精度が悪いです。グラフ理論に関してわからないことがあった場合に「グラフ ○○」や「グラフ理論 ○○」とググるよりも、「ネットワーク ○○」とググったほうが得たい情報にリーチしやすいというライフハックが知られています) さて、冒頭のグラフです。グラフ理論の知識なんかひとつもなくても、このグラフから読み取れることはいくつもあります。例

    日本の中心はどの県だ?グラフ理論(ネットワーク)の基本的な諸概念 - アジマティクス
  • フーリエ級数視覚化装置を作った - アジマティクス

    【方形波のフーリエ級数展開】方形波をフーリエ級数展開(三角関数で近似)している画像です! ∑(゚Д゚) スッスゴイ...!! pic.twitter.com/hFpJxJb6Ac — 数学と物理の名言bot (@Mathphysicsbot) 2015, 9月 28 はぇー面白い これ( https://t.co/uMm0inKXeV )にインスパイアされて、円が10個のバージョンを作ってみたらキモくなった pic.twitter.com/lUkBNNldy9 — どね (@donnay1224) 2016, 2月 5 ヒョエーすごい ワイも作ってみたい! 作りました。 k_1(x)=のところに好きな関数(数列)を入れて遊べるフーリエ級数視覚化マシーンを作りましたhttps://t.co/GmQo5NoZbz pic.twitter.com/vHrQ32FdWw — 鯵坂もっちょ (@mo

    フーリエ級数視覚化装置を作った - アジマティクス
  • ケーキに3回だけ刃を入れてできるだけ公平に分割したい話 - アジマティクス

    今日は楽しいパーティです。 白雪姫は、円形のケーキを作りました。 白雪姫 円形のケーキに上から1回だけ包丁を入れると、最大2分割できます。 2回包丁を入れると、最大4分割までできます。 では、3回包丁を入れると最大で何分割できるでしょうか。そのまま考えると、6分割でしょうか? 上図のように切れば、最大で7つに分割することができます。 ちなみに回包丁を入れると最大分割、回だと、回だと、そして回だと最大個のピースに分割できることがわかっています。なるべく多く線が重なるように切ればいいのです。実際にやって確かめてみたい感じありますが、しかし今回の題はそこではないのでまたこんどにしましょう。 白雪姫は、王子様からもらった大切な包丁をあまり使いたくなかったので、ケーキに3回だけ包丁を入れて7つに分割し、それを7人のこびとたちに下図のように配ることにしました。 こびとたち しかし、このような切り方で

    ケーキに3回だけ刃を入れてできるだけ公平に分割したい話 - アジマティクス
  • 1