2022年11月にOpen AIが公開したChatGPTが世界で注目を集めている。一般ドメインかつ多言語で、従来のチャットボットとはレベルの異なる高品質の対話をリアルタイムに実現するサービスを(Research Preview版ではあるが)無料で提供し、検索、金融、広告、教育、法務などの広範囲な分野の転…
株式会社ゴクロの中路です。 以前のベイズ分類をベースにしたSmartNewsのチャンネル判定で触れたように、SmartNewsで配信する記事を「スポーツ」「エンタメ」「コラム」のようなチャンネルに分類しているのは、人ではなく機械です。そのアルゴリズムとして前回ご紹介したのは「ナイーブベイズ分類器」ですが、記事の分類を行う手法は、他にも様々なものがあります。その中で今回はLatent Dirichlet Allocation(以下LDA)について、先日東京大学の博士課程の皆さんと、社内で合同勉強会を行った際に作成した資料をベースにご紹介します。 LDAでできることの例 前回ご紹介したナイーブベイズ分類器を構築する際には、すでにトピックのラベルが付けられた文章を、学習データとして用意する必要がありました。 一方、LDAの場合は、 東京でサッカー大会が開催された。xx選手のゴールが圧巻であった。
2009/10/7 第1回講義「導入」 パワーポイント2007(推奨) パワーポイント97-2003 PDF 2009/10/14 第2回講義「文法理論(1): CFG, TAG, Dependency Grammar」 パワーポイント2007(推奨) パワーポイント97-2003 PDF 2009/10/21 第3回講義「文法理論(2): CCG」 パワーポイント2007(推奨) パワーポイント97-2003 PDF 2009/10/28 第4回講義「文法理論(3): 型付素性構造とHPSG」 パワーポイント2007(推奨) パワーポイント97-2003 PDF 2009/11/4 第5回講義「文法理論(4): HPSG」 パワーポイント2007(推奨) パワーポイント97-2003 PDF 2009/11/11 第6回講義「確率的CFG(1): PCFG導入」 パワーポイント2007(
テキストマイニングに必要なパターン認識と機械学習について学びます。非常に初歩的な話から始めます。対象者は「テキストマイニングに興味があり、用いられる手法の中身を知りたい(けれど高度な数学は厳しい…)」というビジネスマンや学生さんです。数式は出来る限り「使います」。使わないと意味するところは理解できません。ただし、愚直に数式の一行一行を手計算で順を追って解いていきますし、必要な数学知識はその都度説明し、前提知識は求めませんので「数式出てくるの?じゃあついていけないのでは…」という心配は不要です。この記事の特徴は「機械学習の手法をやたら冗長な数式と過剰なまでの例を用いて、くどくどと同じ話を何度も説明する」ことです。 筆者ことあんちべは純文系出身で、数学や統計学、プログラミングは全然学生時代やってこなかった上、業務でも機械学習を使うことなんて皆無、それどころか機械学習なんて言葉は就職してからよう
(追記):「この本に書かれていないこと」という項を追加しました。 以前も告知しましたが、日本語入力を支える技術という本を書きました。技術評論社から2012年2月8日に発売されます。(私の知っている限りでは、ジュンク堂池袋店、有隣堂AKIBA店、丸善丸の内店、書泉ブックタワーでは既に先行販売しているよう…でしたが、ジュンク堂池袋店、有隣堂AKIBA店、書泉ブックタワーは先行販売分は売り切れの模様です。)どんな本なのか、目次などについては公式ページを参照していただくとして、以下ではどんな本なのか宣伝したいと思います。 この本のキーワードは「実装」と「初心者向け」です。初心者でも実装ができるようにサンプルコードを多用し、また数式が出てくる部分に関してはちょっとしつこいぐらいに説明を加えました。私自身の経験からすると、本を読んだで理解したと思っていても、大抵の場合、細かいところはわかっていないもの
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く