ブックマーク / nazology.kusuguru.co.jp (12)

  • ジンベエザメ、6年間「寄生生物を採取した研究者」を掃除魚だと思い込む - ナゾロジー

    ジンベエザメは研究者のやりたいことを理解して、協力的になれるようです。 西オーストラリア大学(UWA)の海洋生物学者らは過去6年にわたり、同国沿岸に暮らすジンベエザメ72匹の皮膚から寄生生物を採取する調査を続けてきました。 その結果、ダイバーがお馴染みの採取器具を持って近づくだけで、ジンベエザメたちは泳ぐスピードを遅くしたり、完全に止まってくれるようになったのです。 寄生生物の除去はジンベエザメにとっても有益なので、ダイバーを”掃除係”として認めてくれたのかもしれません。 研究の詳細は、2023年5月14日付で科学雑誌『Fishes』に掲載されています。 Whale sharks found to slow down to allow researchers to scrape off parasites https://phys.org/news/2023-05-whale-sharks

    ジンベエザメ、6年間「寄生生物を採取した研究者」を掃除魚だと思い込む - ナゾロジー
    tana_bata
    tana_bata 2023/05/18
  • 白髪ができる本当の原因は「幹細胞」の引き籠りと判明! - ナゾロジー

    幹細胞の引き籠りで色素生産がボイコットされていました。 米国のニューヨーク大学(NYU)で行われたマウス研究によって、私たちの髪の色素が幹細胞の活発な「移動」と「変わり身」にかかっていることが示されました。 研究では幹細胞が活発に住処を出て動き回り、幹細胞状態と分化した色素細胞の間の変身を繰り返している限り、髪の色が保てることが示されています。 しかし毛包が老化してくると、幹細胞の移動性が落ちて「引き籠り状態」になってしまい、色素を作る細胞に変身してくれなくなってしまいました。 研究者たちは幹細胞の移動性を回復させることができれば、再び色素細胞へと変化させ、白髪を治せる可能性があると述べています。 また今回の研究は白髪の原因だけでなく、一度幹細胞から分化した細胞が再び幹細胞に戻るという常識外れとも言える現象を扱ったものとなっており、毛包が幹細胞の可能性を探る重要な存在になると期待されていま

    白髪ができる本当の原因は「幹細胞」の引き籠りと判明! - ナゾロジー
    tana_bata
    tana_bata 2023/04/25
    アラフォーになるとめっきり白髪が増えるのなんなの
  • 実は未解明問題「虫が光に引き寄せられる理由」がついに判明! - ナゾロジー

    虫が光に引き寄せられる理由がついに判明!虫が光に引き寄せられる理由がついに判明! / Credit:Canva . ナゾロジー編集部多くの人々にとって、街灯や勉強机の明かりに虫たちが集まっている風景は身近なものでしょう。 夏場のコンビニの軒先など設置されている害虫駆除装置も光に誘引される虫たちの性質を利用したものであり、近づいてくる虫たちに「バチッ」という音とともに電撃を与え感電死させるものとなっています。 ただなぜ虫たちが光に集まるのか、その根源的な理由については謎となっていました。 たとえば有名な4つの仮説(①~④)をみてみると ①「虫には光に向かって飛ぶ走性があるとする説」に対しては先に述べた通り、そもそも虫には近場の光源に直接向かうような行動がほとんどみられず多くは垂直に直交するような飛び方をします。 ②「月の光を頼りに航行してるところを人工光源によって混乱したとする説」は長らく最

    実は未解明問題「虫が光に引き寄せられる理由」がついに判明! - ナゾロジー
    tana_bata
    tana_bata 2023/04/24
  • ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー

    宇宙はブラックホールに見つめられているのかもしれません。 米国のシカゴ大学(University of Chicag)で行われた研究によって、ブラックホールそのものに、量子世界の不思議な現象である「重ね合わせ」を破壊する効果がある可能性が示されました。 量子は「シュレーディンガーの」に代表されるような観測するまで状態が確定しない、複数の可能性の「重ね合わせ」状態となっています。 重ね合わせが破壊された量子は「どこにでもいる」状態から「ここにしかない」状態に変化し、人間の直感に反しない「現実的」な動きをとるようになります。 研究者たちは、宇宙がブラックホールを目のように使って、自分の内側を観測している可能性があると述べています。 宇宙に意識があるかはさておき、宇宙現象そのものが観測者の役割を果たすという考えは非常に先進的なものといえます。 しかし、重力の化け物であるブラックホールのどこに、

    ブラックホールは量子的「重ね合わせ」を破壊する世界の観測者だった - ナゾロジー
    tana_bata
    tana_bata 2023/03/31
    "しかし研究者たちの好奇心は、観測者「ボブおじさん」をさらなる過酷な場所に連れていきます。 その場所とは、ブラックホールの中でした。"
  • 山道の移動をサポートする「超軽量歩行用外骨格」が登場 - ナゾロジー

    登山をサポートする超軽量な歩行用外骨格デス・ストランディングに登場する強化外骨格 / Credit:The Gaming Circle(YouTube)_Death Stranding – How To Access Your Gold Power Skeleton DLC(2019)崩壊した大陸を歩いて荷物を運ぶゲーム「デス・ストランディング」では、歩行を強化する外骨格「パワー・スケルトン」が登場します。 非常に重い荷物を背負った主人公はこの歩行用外骨格のサポートを得て、長距離の配達任務をこなすのです。 現実世界で似たような任務を果たすのは、山小屋に荷物を運ぶ「歩荷」くらいですが、実際に歩行用外骨格が存在するなら、様々なシーンで活躍するはずです。 「下山前に疲労困憊」なんてことも / Credit:Canva例えば、ハイキングや登山を楽しむ際に歩行をサポートする「コンパクトな外骨格」があ

    山道の移動をサポートする「超軽量歩行用外骨格」が登場 - ナゾロジー
    tana_bata
    tana_bata 2023/03/21
  • 1歳女児の頭蓋内から「未発達の胎児」を摘出!非常に珍しい症例報告 - ナゾロジー

    このほど、中国で1歳の女児の頭蓋内から胎児が摘出されていたことが明らかになりました。 中国・復旦大学病院によると、女児は頭部の肥大症と運動能力の発達に遅れが見られたため、両親に連れられて同病院を訪れたという。 医師チームは当初、頭部に単純な腫瘍があると判断してCT(コンピューター断層撮影)スキャンを行いましたが、驚くことに、女児の脳を圧迫する形で頭蓋内に「未発達の胎児の塊」が発見されたのです。 この胎児は、一卵性双生児として生まれてくるはずだった女児の片割れと見られています。 研究の詳細は、2022年12月12日付で学術誌『Neurology』に掲載されました。 In extremely rare case, doctors remove fetus from brain of 1-year-old https://www.livescience.com/in-extremely-rare

    1歳女児の頭蓋内から「未発達の胎児」を摘出!非常に珍しい症例報告 - ナゾロジー
    tana_bata
    tana_bata 2023/03/14
  • 森で死んだものはどうなるのか? シカの死体を使った実験 - ナゾロジー

    森で死んだものの遺体を、自然はどのように処理しているのでしょうか? 東京農工大学大学院、米イリノイ大学(University of Illinois)の共同研究チームは、森林内にニホンジカの死体を設置し、どのスカベンジャー(死肉動物)が、どれくらいの時間で発見できるか、また、死体が消失するまでにどの程度かかるかを調査。 その結果、最初に死体を発見するのは哺乳類で、特に、タヌキが最も早くシカを見つけることが明らかになりました。 嗅覚に優れた哺乳類は、死体をすばやく発見、分解することで、有害な病原菌の発生から日の森林生態系を守っているようです。 研究の詳細は、2022年9月30日付で科学雑誌『Scientific Reports』に掲載されました。

    森で死んだものはどうなるのか? シカの死体を使った実験 - ナゾロジー
    tana_bata
    tana_bata 2022/10/11
  • 「指パッチン」で4400℃のプラズマ衝撃波を発生させる"テッポウエビ" - ナゾロジー

    「最強の生物を考えてみよう」という宿題が小学生時代の夏休みに出されたら、いったいどんな姿を想像するでしょうか? 恐竜のように巨大で力強い生命を思い浮かべる人もいれば、優れた環境適応能力をもつ細菌こそが最強だと考える人もいるでしょう。 あるいは現在繁栄している人間こそが最強と呼ぶべきだと言う人がいるかもしれません。 しかし今回紹介するテッポウエビは、恐竜や細菌、そして人間も存在しないSFのような「遠距離攻撃能力」を持ちます。 巨大なハサミの2つの刃が噛み合うとき、凄まじい衝撃波が生成され、水温は瞬間的に4400℃にも達し、プラズマの閃光きらめく衝撃波が生じます。 衝撃波をまともにくらった小魚やカニは一瞬にしてノックダウン、テッポウエビのエサになるのです。 しかし瀬戸内海の魚市場で1盛り800円で売られているこの最強生物は、いったいどうやって、そんなSFチックな能力を発揮しているのでしょうか?

    「指パッチン」で4400℃のプラズマ衝撃波を発生させる"テッポウエビ" - ナゾロジー
    tana_bata
    tana_bata 2022/07/08
  • 天才発明家ニコラ・テスラが生み出した「水を制御するテスラバルブ」に新機能が見つかる - ナゾロジー

    エジソンと電力戦争を繰り広げたことでも有名な科学者ニコラ・テスラ。 彼は100年前に、可動部品を利用せずに形状だけで流体の方向を制御する独創的なバルブの特許を取得しています。 ニューヨーク大学の研究チームは、これまで格的な研究がされていなかった、この通称「テスラバルブ」の流体力学を徹底調査し、これまで知られていなかった新しい機能や現代でも通用する有用性を明らかにしたと報告しています。 天才テスラの発想は、100年を経てもまだ完全に理解されていなかったのかもしれません。 この研究の詳細は、科学雑誌『Nature Communications』で5月17日に公開されています。

    天才発明家ニコラ・テスラが生み出した「水を制御するテスラバルブ」に新機能が見つかる - ナゾロジー
    tana_bata
    tana_bata 2021/05/20
  • 魚卵は鳥に食べられても生きたまま糞から出てくると判明! 魚は糞によって別の湖に移動していた - ナゾロジー

    魚卵は鳥にべられても生きたまま糞から出てくると判明! 魚は糞によって別の湖に移動していた / 鳥にべられることで植物の種のように、魚の卵は別の湖に拡散する/Credit:PNAS animals plants

    魚卵は鳥に食べられても生きたまま糞から出てくると判明! 魚は糞によって別の湖に移動していた - ナゾロジー
    tana_bata
    tana_bata 2020/06/25
  • プログラマーの脳は作業中に”誰かの声”を聞いていると判明! 数学力より音声理解力が重要 - ナゾロジー

    一般の人にとって、プログラマーの持つ知識と技術は別世界のもののように感じられます。 海外の研究者にとってもプログラマーの持つ特殊技能は興味の対象であったようで、古くは1980年代から、心理学的手法を使ったプログラマーの「特別な脳」の分析が行われてきました。 そんな中、近年の急速な神経科学の発展により、MRI(核磁気共鳴)やEEG(脳波測定)を用いて脳活動を可視化することが可能になってきました。 しかし、これまでの研究で可視化した脳領域は、読書ゲームといった日常生活時にも使われる汎用的な領域であり、プログラム時にだけ働く特異的な領域ではありませんでした。 そこで今回、ドイツのケムニッツ工科大学の研究者たちは、プログラム時にだけ働く「プログラム脳」の特定に挑戦。結果は、予測とは大きく異なるものとなりました。 なんと、プログラム時に働く脳機能は数学的能力や論理的推察力ではなく、会話時における相

    プログラマーの脳は作業中に”誰かの声”を聞いていると判明! 数学力より音声理解力が重要 - ナゾロジー
    tana_bata
    tana_bata 2020/06/10
    まぁ脳内会議感あるよね
  • 解析不能!30年以上前のレトロゲームから謎の「自動生成アルゴリズム」が見つかる - ナゾロジー

    Point ■レトロゲームには容量不足や技術的制約を解決するため、現代の我々から見ても解析できない謎の技術が使われていることがある ■今回、ATARI2600から82年に発売されたゲーム『Entombed』に、全くロジックが不明の迷路自動生成プログラムのコードが発見された ■迷路の壁を完全ランダムに配置すればクリア不能になってしまうが、このプログラムがなぜ通行可能なパターンで迷路を生成しているかは、まったくの謎だという ほんの数十年前、コンピュータ関連の技術が飛躍的に向上しました。 特にデータ容量の向上はめざましく、現代の若い人たちにとって容量の単位は「ギガ」が標準になっています。 しかし初代のスーパーマリオの全ゲーム容量は40KB、初代ドラゴンクエストの全容量は64KBでした。 これはこの記事のトップに貼られている画像の容量よりも遥かに小さい容量です。 レトロゲームの開発は、そんな小さな

    解析不能!30年以上前のレトロゲームから謎の「自動生成アルゴリズム」が見つかる - ナゾロジー
    tana_bata
    tana_bata 2019/09/25
  • 1