タグ

algorithmとaiに関するtarchanのブックマーク (6)

  • ディープマインドがAIで高速アルゴリズムを発見、C++に採用

    ディープマインドはAI「アルファデブ」を使って、人間が考案したアルゴリズムよりも高速にソートを実行するアルゴリズムを発見した。アルゴリズムはすでにC++に取り入れられ、使用されているという。 by Will Douglas Heaven2023.06.13 19 12 ディープマインド(DeepMind)は、基礎コンピューター科学における発見を続けている。昨年、同社はゲームをプレイする人工知能AI)「アルファゼロ(AlphaZero)」を使って、さまざまなコードの核となる重要な数式の計算を高速化する新たな手法を発見し、50年前の記録を更新した。 そして今、同社(2023年4月に姉妹会社のAI研究所と統合し、グーグル・ディープマインドと改名)は同じ偉業を再度達成した。それも二度もだ。英国を拠点とする同社はアルファゼロの新バージョンである「アルファデブ(AlphaDev)」を使用し、それまで

    ディープマインドがAIで高速アルゴリズムを発見、C++に採用
  • DeepMind、AIで人間考案のものより優秀なソートアルゴリズムを発見 最大70%高速化

    Google傘下のAI企業Google DeepMindは6月7日(現地時間)、アルゴリズムを開発するAIAlphaDev」が、人間が考えたものより高速なソートアルゴリズムを発見したと発表した。 ソートアルゴリズムは、入力されたデータを一定のルールに基づいて並べ替えるもの。ネット検索結果の並べ替えやランキング制作などIT技術の根幹を担う技術の一つ。今回AlphaDevが考案したアルゴリズムは既存のものに比べて、少量のデータなら最大70%、数十万規模の大量のデータなら約1.7%速く処理できた。 DeepMindはAlphaDevに新しいアルゴリズムを発見させるため、ソートの作業を「組み立てゲーム」としてプレイさせた。「正確にソートできる」「既存のアルゴリズムより高速である」という2点を満たせばクリアとした。 関連記事 OpenAIやDeepMindのCEOやトップ研究者ら、「AIによる人

    DeepMind、AIで人間考案のものより優秀なソートアルゴリズムを発見 最大70%高速化
  • ビル・ゲイツもAI分野の必読書と推した『マスターアルゴリズム』邦訳が原著刊行から5年以上の時を経て出る - YAMDAS現更新履歴

    www.kamishima.net ペドロ・ドミンゴスの『The Master Algorithm』は、ビル・ゲイツが AI 分野の必読書に挙げていたので注目し、ワタシも何度か文章の中で引き合いに出している。 ユートピアのキモさと人工知能がもたらす不気味の谷 - WirelessWire News(ワイヤレスワイヤーニュース) 我々は信頼に足るアルゴリズムを見極められるのか? - WirelessWire News(ワイヤレスワイヤーニュース) そして、邦訳の刊行が期待される洋書を紹介しまくることにする(2017年版)でも取り上げているが、この原著が刊行されたのは2015年である。それから5年以上経ち、もうこれは邦訳の話は流れてしまったかと半ば諦めていたところ、『マスターアルゴリズム 世界を再構築する「究極の機械学習」』の邦題で刊行される。ワオ! マスターアルゴリズム 世界を再構築する「究

    ビル・ゲイツもAI分野の必読書と推した『マスターアルゴリズム』邦訳が原著刊行から5年以上の時を経て出る - YAMDAS現更新履歴
  • 「物理法則を自力で発見」した人工知能 | WIRED VISION

    前の記事 「衛星成功に総書記は涙」:北朝鮮の核再開宣言とミサイル輸出 「物理法則を自力で発見」した人工知能 2009年4月15日 Brandon Keim Image credit: Science、サイトトップの画像はフーコーの振り子。Wikimedia Commonsより 物理学者が何百年もかけて出した答えに、コンピューター・プログラムがたった1日でたどり着いた。揺れる振り子の動きから、運動の法則を導き出したのだ。 コーネル大学の研究チームが開発したこのプログラムは、物理学や幾何学の知識を一切使わずに、自然法則を導き出すことに成功した。 この研究は、膨大な量のデータを扱う科学界にブレークスルーをもたらすものとして期待が寄せられている。 科学は今や、ペタバイト級[1ペタバイトは100万ギガバイト]のデータを扱う時代を迎えている。あまりに膨大で複雑なため、人間の頭脳では解析できないデータセ

  • 人工知能基本問題研究会(SIG-FPAI)での岡野原さんの発表のときに取ったメモ - yasuhisa's blog

    hillbig.cocolog-nifty.com ということで僕が取ったメモも出してみようと思う。内容としては大体3つで オンライン学習 L1正則化 索引を用いた効率化, 全ての部分文字列を利用した文書分類 という感じだったんだけど、最後の索引の付近はid:syou6162の勉強不足によりよく分からなかった。が、最初の二つはなんとか付いていけたので、出してみます。主に自分用のメモですが。 オンライン学習自然言語処理のデータは3つの特徴がある。 高次元 疎 冗長 で、あとはデータがばかでかいので、いわゆるバッチ処理だとメモリに乗り切らなかったりとかということがある。それでオンライン学習というのが今よく使われているようだ。オンライン学習の方法には下のような方法がある。簡単なものから難しいものへ。 perceptron 自然言語処理と相性がよい 色んなもののベースになる 線形分離できるときには

    人工知能基本問題研究会(SIG-FPAI)での岡野原さんの発表のときに取ったメモ - yasuhisa's blog
  • CNET Japan

    人気記事 1 テスラの「紛らわしい機能名」めぐりカリフォルニア当局が30日の販売停止を要求 2025年07月22日 2 「Pixel 10」の姿が明らかに、グーグルが映像公開--8月20日発表へ 2025年07月22日 3 「たんぱく質がとれる水」発売--500mlペットボトルに5g配合 1178円 2025年07月22日 4 マニアック過ぎたソニーXperia、変わり始めた矢先の不具合--文鎮騒動を解説(石川温) 2025年07月22日 5 山手線で5人負傷--発火相次ぐモバイルバッテリー、注意すべき8つのポイント 2025年07月22日 6 「ドン・キホーテ」初の無人店舗--商品を手にとって店を出るだけでOK セルフレジ不要 2025年07月22日 7 サムスン最新折りたたみスマホを入手も、すぐ「コンクリ地面」に落としてしまった話 2025年07月19日 8 アップル「AirPods

    CNET Japan
  • 1