タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

galoisに関するtetrylのブックマーク (1)

  • 方程式からガロア理論 - 再帰の反復blog

    方程式の解法の話からガロア理論にたどり着くまでの要点のようなもの。 ガロア以前 ガロアが論文を書くより以前にラグランジュ、ガウス、ルフィニ、アーベルらの研究により、次のような結果が得られていた。 2次3次4次の方程式について: 提案されてきた方程式の解法はどれも解の置換の性質と密接に関係している。(ラグランジュ) 5次以上の方程式について: 解の置換の性質を調べることにより、5次以上の方程式が一般的にはべき根で解けないことが証明される。(ルフィニ、アーベル) 円周等分方程式などについて: 解の置換の性質を調べることにより、5次以上でもいくつかのタイプの方程式がべき根で解けることが証明される。(ガウス、アーベル) ここからさらに進んで、任意の方程式についての解の置換(=ガロア群)の性質を考察したのがガロアだった、という流れになる。 対称性(シンメトリー) 方程式の対称性: 2次方程式の場合

  • 1