2024.07.22 「大学時報」第417号(2024.7月号)「小特集 大学の研究力促進に向けた学内環境整備の取り組み」に、本学の寄稿記事が掲載されました。
2024.07.22 「大学時報」第417号(2024.7月号)「小特集 大学の研究力促進に向けた学内環境整備の取り組み」に、本学の寄稿記事が掲載されました。
物質を構成する基本的な粒子のひとつ「クオーク」が6種類あることを最初に予想し、2008年にノーベル物理学賞を受賞した益川敏英さんが、今月23日、上顎がんのため亡くなりました。81歳でした。 益川さんは名古屋市出身で、京都大学の理学部の教授を務め、2003年に退官したあとは名古屋大学の特別教授や素粒子宇宙起源研究機構の機構長などを務めました。 益川さんは名古屋大学理学部の学生時代に、物質を構成する基本的な粒子「素粒子」の研究を始めました。 卒業後に京都大学の助手になり、1973年、同じ助手だった小林誠さんとともに、当時はまだ3種類しか発見されていなかった「素粒子」のひとつの「クオーク」が実際には6種類以上存在すると予想する「小林・益川理論」を提唱しました。 のちにその正しさが証明され、素粒子物理学の発展に大きく貢献したとして、小林さんや南部陽一郎さんとともに2008年にノーベル物理学賞を受賞
小谷太郎『物理の4大定数 宇宙を支配するc、G、e、h』 幻冬舎plusで立ち読み・購入 Amazon 楽天ブックス 紀伊國屋書店 セブンネット 光速c、重力定数G、電子の電荷の大きさe、プランク定数h。これらの基礎物理定数は日常から宇宙までを支配する法則が数値となったものだ。我々はふだん物理定数など意識せずに暮らしているが、この値が違えば太陽はブラック・ホールと化し、人類は地球にいられず火星に住むハメになり、宇宙の姿は激変する。本書では人類がいかにして4大物理定数を発見したか、そのことでどんな宇宙の謎が解け、またどんな謎が新たに出現したかを解説。相対性理論、宇宙の構造、素粒子や量子力学までわかる画期的な書! 幻冬舎plusで立ち読み・購入 Amazon 楽天ブックス 紀伊國屋書店 セブンネット 小谷太郎『宇宙はどこまでわかっているのか』 幻冬舎plusで立ち読み・購入 Amazon 楽天
数学に魅せられて、科学を見失う――物理学と「美しさ」の罠 作者:ザビーネ・ホッセンフェルダー発売日: 2021/04/09メディア: Kindle版物理学者は、自然法則の中に理論の自然さや美しさ、対称性、単純さ、統一性を求める。それは、自然法則はエレガントでシンプルなものであるべきなので、それを判断基準にすべきだ、という思想があるからだし、現在の素粒子物理学の世界は簡単な実験は終わってしまって難しい実験ばかりが残り、仮説を考えようにもデータがなく「自然さ」や「美しさ」といったとっかかりが必要だからという背景もある。 しかし、美しさや単純さは主観的な価値観であり、物理法則とは無関係だ。科学は芸術ではないし、人間の自然さの感覚に沿う理由も存在しない。ではなぜ科学では「自然さ」や「美しさ」が重視されているのだろうか。本書『数学に魅せられて、科学を見失う』は、まさにそうした「美しさ」と「物理学」を
私たちが生きる宇宙とは別の宇宙「パラレルワールド」が存在するという考えは古くから存在しますが、近年はパラレルワールドの1つとして「ミラー・ユニバース」が注目を集めています。ビッグバンを中心として私たちの世界とは時間も何もかもが逆向きに存在するミラー・ユニバースについて、科学メディアのGuardian Magazineが解説しています。 Some Physicists Believe there's a 'Mirror Universe' in which Time moves Backwards https://www.guardianmag.press/2021/04/some-physicists-believe-theres-mirror.html Why some physicists really think there's a 'mirror universe' hiding
","naka5":"<!-- BFF501 PC記事下(中⑤企画)パーツ=1541 -->","naka6":"<!-- BFF486 PC記事下(中⑥デジ編)パーツ=8826 --><!-- /news/esi/ichikiji/c6/default.htm -->","naka6Sp":"<!-- BFF3053 SP記事下(中⑥デジ編)パーツ=8826 -->","adcreative72":"<!-- BFF920 広告枠)ADCREATIVE-72 こんな特集も -->\n<!-- Ad BGN -->\n<!-- dfptag PC誘導枠5行 ★ここから -->\n<div class=\"p_infeed_list_wrapper\" id=\"p_infeed_list1\">\n <div class=\"p_infeed_list\">\n <div class=\"
本当にすべての物体が引き合っているの?アイザック・ニュートン(ゴドフリー・ネラー画)。 / Credit:Wikipediaりんごが木から落ちるのを見るまでもなく、地球上のあらゆる物体は地面に向かって引っ張られています。 それはずっと古代から人々の疑問でした。 アリストテレスは「万物には本来あるべき場所へ戻ろうとする力が働くのだ」と考えました。 彼は鳥が巣へ戻るのも、地面から持ち上げた物が地面に戻っていくのも、同じ原理によるものだと考えたのです。 しかし、太陽や月をはじめとする天体は、空を移動し続けていてあるべき場所があるようには見えません。 物体を地面に引き寄せる力とはなんなのか? それはずっと長い間人類にとっての謎だったのです。 この問題に大きな転機を与えたのが、17世紀の偉大なる科学者アイザック・ニュートンです。 ニュートンは物体に働く「力」というものを明確に定義することで、力の作用
中国科学技術大学などの研究チームは12月3日(現地時間)、量子コンピュータの計算能力が従来のスーパーコンピュータを上回ることを示す「量子超越性」を、光を使った量子コンピュータで実証したと発表した。同日付で米科学誌「Science」のオンライン版に掲載された。 光の最小単位である光子は、ボース粒子(ボソン)という素粒子に分類される。研究者たちは50個の光子と100個の光子検出器を使い、干渉し合う多くのボソンの確率分布を計算する「ガウシアンボソンサンプリング」を行った。このサンプリングを光量子コンピュータで200秒間行った際の計算を中国のスパコン「神威・太湖之光」(Sunway TaihuLight)で行うと25億年、理化学研究所の「富岳」で行っても6億年かかるとしている。 量子超越性を巡っては、2019年10月に米Googleが、超電導量子ビットを使った量子コンピュータプロセッサ「Sycam
ことしのノーベル物理学賞に、ブラックホールに関する研究で大きな貢献をしたイギリスのオックスフォード大学のロジャー・ペンローズ氏ら3人の研究者が選ばれました。 受賞が決まったのは、 ▽イギリス・オックスフォード大学のロジャー・ペンローズ氏、 ▽ドイツのマックス・プランク地球外物理学研究所のラインハルト・ゲンツェル氏、それに ▽アメリカ・カリフォルニア大学のアンドレア・ゲッズ氏の3人です。 ペンローズ氏は、20世紀最大の物理学者と言われたアインシュタインの一般相対性理論によって、ブラックホールの形成を証明したことが評価されました。 また、ゲンツェル氏とゲッズ氏は、宇宙の観測技術を発達させ、私たちの銀河の中心部にあると見られていた、太陽のおよそ400万倍の質量の超巨大ブラックホールの存在を明らかにしたことが評価されました。 世界的な科学雑誌で去年の画期的な10の科学成果にも選ばれた世界初のブラッ
【ネタバレあり】量子物理学者に「映画『TENET テネット』がどうすさまじいのか」を教えてもらった2020.09.29 20:0073,218 山田ちとら クリストファー・ノーラン監督の最新作『TENET テネット』、もう観ました? 観たけど複雑すぎてよくわからなかったのは筆者だけではなかったはず。 そこで、作中に何度も登場した「エントロピー」という言葉について調べてから再度観に行ったんですが、それでもまだまだわからなかったよ…!! ならばプロに解説していただくしか理解への道は拓けない。というわけで、『TENET テネット』の科学監修を担当された東京工業大学理学院物理学系助教の山崎詩郎先生にお話を伺ってきました。 山崎詩郎(やまざき・しろう) Photo: かみやまたくみ東京大学大学院理学系研究科物理学専攻博士課程修了。博士(理学)。量子物性の研究で日本物理学会第10回若手奨励賞を受賞。『
ブラックホールには一度入ったが最後、光さえも脱出できないほど強い重力がかかる領域の境界「事象の地平面」があるといわれている。しかし、理化学研究所はこのほど「ブラックホールは事象の地平面を持たない高密度な物体である」とする、これまでの通説とは異なる研究結果を発表した。 従来、ブラックホールに落ちたリンゴの情報がどうなるのかはよく分かっていなかったが、今回の研究を進めていけばブラックホール中の情報を追跡できるようになり、ブラックホールを情報のストレージにできる可能性も開けるという この理論を発表したのは、同研究所の横倉祐貴上級研究員らの共同研究チーム。従来のブラックホール理論が一般相対性理論に基づくのに対し、研究チームは一般相対性理論と量子力学に基づいて理論を組み立てた。 従来の理論では、光も脱出できない内側の領域をブラックホール、その境界を事象の地平面といい、ブラックホールの質量によって決ま
理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 本研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直
未発見の謎の物質「暗黒物質」を探索している東京大や名古屋大、神戸大が参加する国際実験チーム「ゼノン」は17日、イタリアのグランサッソ国立研究所の地下にある施設で実施した実験で、想定外の事象を観測したと発表した。未知の素粒子を捉えた可能性があるという。暗黒物質である可能性は低いが、信号の特徴から素粒子物理学で存在が予想される粒子「アクシオン」かもしれず、東大などはさらに詳しく調べる。アクシオンも
物理学は常に数学の発展と共に進歩してきた。 というより物理学からの必要に駆られた要請によって新たな数学の概念が切り開かれてきた。 したがって当然、物理を学ぶ際には現象そのものの理解とその裏に潜む数学的内容の理解が両輪となるのだが、 なぜだか日本の学校教育においては、この前提が上手く機能していない。 物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要な概念が登場するといった具合だ。 具体的には、以下のようなものがある。 小学校6年の理科で「てこ」の法則性を学ぶ。この背景にあるはずの「反比例」の関係は中学1年の数学で習う。中学校3年の理科で力の分解を学ぶ。この背景にあるはずの「三角比」は高校1年の数学Ⅰで習う。中学校3年の理科で運動エネルギーを学ぶ。この背景にあるはずの「二次関数」は高校1年の数学Ⅰで習う。高校1年の物理基礎で等加速度運動を学ぶ。この背景にあるはずの「多項
これまで私たちは、「宇宙は全方位に向かって均質であり、宇宙のどこでも物理定数は不変」だと考えてきました。 ですが近年の度重なる天文学的な測定により、この宇宙を規定するはずの物理定数が、宇宙の異なる場所では違っていることを示唆する結果がもたらされています。 そこで研究者は決定的な結論を得るために、銀河の様々な地点に存在する、クエーサー(非常に活動的なブラックホール)から発せられる電磁波を観測し、宇宙各地の電磁気力の強さを決める定数(微細構造定数)を測定しました。 結果は驚くべきもので、宇宙の一方では電磁気力が強く、また逆の方向では電磁気力が弱くなっていたのです。 これは単に宇宙に方向性があるということだけを意味するものではありません。 電磁気力は原子核が電子を引き留める力です。これが宇宙の場所によって異なるということは、同じ水素や酸素であっても、宇宙の端(高電磁気区域)と端(低電磁気区域)で
大学と大学院の,理工系の講義ノートPDFのまとめ。 PDF形式の教科書に加え,試験問題と解答,および授業の動画も集めた。 学生・社会人を問わず,ぜひ独学の勉強に役立ててほしい。 内容は随時,追加・更新される。 (※現在,60科目以上) カテゴリ別の目次: (1) 数学の講義ノート (2) 物理学の講義ノート (3) 情報科学の講義ノート (4) 工学の講義ノート ※院試の問題と解答のまとめはこちら。 (1)数学の講義ノート 解析学: 解析学の基礎 (大学1年で学ぶ,1変数と多変数の微分・積分) 複素解析・複素関数論 (函数論) ルベーグ積分 (測度論と確率論の入門) 関数解析 (Functional Analysis) 代数: 線形代数 (行列論と抽象線形代数) 群論入門・代数学 (群・環・体) 有限群論 (群の表現論) 微分方程式: 常微分方程式 (解析的および記号的な求解) 偏微分方程
重力波が地球に到達した際にはわずかに空間が歪むが、その変化は地球から太陽までの距離(約1.5億km)が水素原子1つ分(約0.1nm)変わる程度の極めて微小なもの。これを検出するために、KAGRAのプロジェクトでは光とハーフミラーを用いた「レーザー干渉計」という検出器を用意した。 KAGRAは「望遠鏡」という言葉から一般的に想像できる天体(光学)望遠鏡や電波望遠鏡とは異なり、レーザー光とハーフミラー(ビームスプリッター)を用いて“距離の差”を計測する。レーザーの発振器から放出された光は斜め45度に設置されたハーフミラーを通り、半分は直角に反射、もう半分は透過する。それぞれの光は3km先にある鏡で反射し、ハーフミラーに戻ってくる。2つの光はハーフミラーで「干渉」を起こすため、光検出器でその干渉縞(模様)を計測すれば光路長の小さな変化を検出できるという仕組みだ。 KAGRAは検出精度を上げるため
2010年代、物理学を永遠に変えた出来事まとめ2019.11.25 22:00122,778 Ryan F. Mandelbaum - Gizmodo US [原文] ( satomi ) ターニングポイントが一度に訪れた10年。 2010年代は宇宙、物理の考え方が根底から変わる「パラダイムシフトの通過点」だったと、スタンフォード大学のNatalia Toro素粒子物理学・天体物理学准教授は語り、「行く末はわからないけど、50年後に振り返って、あれが幕開けだったと思うかもしれない」と言っています。 10年の主な出来事を振り返ってみましょう。 神の素粒子2010年代はマクロもミクロも研究が大きく進化した10年でした。中でも大きかったのは、スイスのジュネーブにある全長約27kmの大型ハドロン衝突型加速器(LHC)で見つかったヒッグス粒子発見のニュースです。素粒子物理学の理論的枠組み「標準模型」
物理の話題 エネルギーの発見と筋肉による錯覚について エネルギー・近くて遠い存在 "我々は横紋筋にだまされている" すべての分野において言えることであるが、”人類の知識や重要な発見は大勢の人間の経験の積み重ねによって得られたものである。” あたかも、力学はニュートンのような一人の天才が現れて,出来上がったように思われがちであるが、物理学においても、上のことは決して例外ではない。 その典型的な例が「エネルギー保存則の発見」である。 エネルギー保存則の発見までの長い道のり ニュートンの著書「プリンキピア」が出版されたのは、1687年であるが、ヘルムホルツによる理論的な「エネルギー保存則」の定式化は 1847年である。 物理学者が「エネルギー」の重要性を認識するには、ニュートン力学の誕生から、なんと 2世紀近くの歳月を要している。 その間に、ニューコメンの蒸気機関の発明(1712年)、さらに
スペインのトレホンデアルドスで、AFPの取材を受けるスイスの宇宙物理学者、ミシェル・マイヨール氏(2019年10月9日撮影)。(c)JAVIER SORIANO / AFP 【10月10日 AFP】人類が地球を離れ、太陽系外の惑星に移住する未来は来ないだろう──系外惑星発見の功績で2019年のノーベル物理学賞(Nobel Prize in Physics)の受賞が決まったスイス人科学者、ミシェル・マイヨール(Michel Mayor)氏(77)が9日、AFPのインタビューに語った。遠すぎるからだという。 マイヨール氏は8日、系外惑星の検出技術を改良した研究業績をたたえられ、同僚のディディエ・ケロー(Didier Queloz)氏と共にノーベル物理学賞の受賞者に選ばれた。 学会出席中のスペイン・マドリード郊外でインタビューに応じたマイヨール氏は、人類の惑星間移住の可能性を問われると、「系外惑
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く