タグ

word2vecに関するtmsanrinshaのブックマーク (8)

  • word2vec(Skip-Gram Model)の仕組みを恐らく日本一簡潔にまとめてみたつもり - これで無理なら諦めて!世界一やさしいデータ分析教室

    久しぶりの記事更新です。 今回はかねてより書いてみたかったword2vecについて。 word2vecはとても面白い考え方なのですが、個人的には仕組みがちょっと捉えづらく、理解するのに結構時間がかかりました。 そこで今回は、過去の自分を救えるように、word2vecをできるだけ簡潔に、そして直観的に理解できるように解説していきます。 なお、word2vecについては以下書籍でよくまとまっているので、よろしければ是非! Pythonと実データで遊んで学ぶ データ分析講座 作者: 梅津雄一,中野貴広出版社/メーカー: シーアンドアール研究所発売日: 2019/08/10メディア: 単行(ソフトカバー)この商品を含むブログを見る ※追記※ スマホのAMPだと、行列や数式がうまく表示されない可能性がありますので、こちらのリンクかPCから購読頂けますと幸いです。 word2vecを使うと何ができる

    word2vec(Skip-Gram Model)の仕組みを恐らく日本一簡潔にまとめてみたつもり - これで無理なら諦めて!世界一やさしいデータ分析教室
  • サブカルのためのword2vec | BLOG - DeNA Engineering

    はじめに AIシステム部AI研究開発グループ アルバイトの五十嵐です。( @bonprosoft, ポートフォリオ:http://vbcpp.net/about/ ) 現在、東北大学大学院の修士1年で、大学院では(自然言語ではなく)高速な文字列処理アルゴリズムに関する研究を行っています。 私は2017年9月上旬から3週間ほど、アルバイト兼インターンとしてハッカドールチーム内のNLPのタスクに取り組んでいました。 その後はアルバイトとして、期間中にできなかった追加実験と実際の製品への適用に取り組んでいます。 取り組んだタスク 突然ですが、みなさま、ハッカドールはインストールされていますか? ハッカドールは、主にサブカルチャーに関する記事に特化した、ニュースアプリケーションです。 アプリケーション内のユーザーのクリックや「ホシイ/イラナイ」などのアクションを通して、ハッカドールがユーザーの好み

    サブカルのためのword2vec | BLOG - DeNA Engineering
  • どうしたら「彼女」から「奥さん」になれるかを『Word2Vec』に聞いてみた | AI専門ニュースメディア AINOW

    最終更新日: 2019年7月10日 工学部女子大生のranranです。 私は彼氏のことが大好きで、いつも彼氏のことばかり考えています。もちろん、将来的には彼氏の「奥さん」へと昇格したいと考えています。しかし、このまま時間の流れに身を任せていてれば、自然と「彼女」から「奥さん」になれるのでしょうか? 非常に不安です。

    どうしたら「彼女」から「奥さん」になれるかを『Word2Vec』に聞いてみた | AI専門ニュースメディア AINOW
  • Doc2Vecの仕組みとgensimを使った文書類似度算出チュートリアル

    類似したコンテンツのタイトルは、女性アーティストだらけとなっている。浜崎あゆみは日のレディー・ガガらしい。 Bag-of-wordsの欠点とDoc2Vecのメリット Bag-of-wordsは文書内の単語の出現回数をベクトルの要素とした分散表現だ。例えば、 { I, have, a, pen, I, have, an, apple } という単語区切りの文書があるとしよう。この文書をBag-of-wordsでベクトル化する。ベクトルの並び順をI, have, a, pen, an, appleとすると、 [2, 2, 1, 1, 1, 1] と表現することになる。単に出現頻度を計算しているだけなので、シンプルで計算効率よく分散表現を得ることが出来る。 では、Bag-of-wordsの何が問題なのだろうか?Bag-of-wordsでは、単語の出現順序が考慮されず、同様の単語が使われていれば

    Doc2Vecの仕組みとgensimを使った文書類似度算出チュートリアル
  • Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力

    Word2Vecとは Word2Vecで演算処理する Word2Vecとニューラルネットワーク Word2Vecの仕組み CBoW Skip-gram Word2Vecを応用することができる分野 レコメンド 機械翻訳 Q&A・チャットボット 感情分析 Word2Vecの弱点 Word2Vecの派生系や類似ツール GloVe WordNet Doc2Vec fastText まとめ 参考 世界中のWebサイトの数は2014年に10億件を超えたようだ。そして、Facebookのユーザー数だけでも16億人を超えている。 そして、そのいずれもコンテンツの中身の大部分はテキストから成り立っていることだろう。 ということは、莫大に増大し続けるネット上のデータのほとんどはどこかの国の言葉だってことだ。世界中の人が毎日テキストデータを生成し続けたことはこれまでの歴史上無かったんじゃないだろうか。 もしそん

    Word2Vec:発明した本人も驚く単語ベクトルの驚異的な力
  • Word2Vec のニューラルネットワーク学習過程を理解する · けんごのお屋敷

    Word2Vec というと、文字通り単語をベクトルとして表現することで単語の意味をとらえることができる手法として有名なものですが、最近だと Word2Vec を協調フィルタリングに応用する研究 (Item2Vec と呼ばれる) などもあるようで、この Word2Vec というツールは自然言語処理の分野の壁を超えて活躍しています。 実は Item2Vec を実装してみたくて Word2Vec の仕組みを理解しようとしていたのですが、Word2Vec の内部の詳細に踏み込んで解説した日語記事を見かけることがなかったので、今更感はありますが自分の知識の整理のためにもブログに残しておきます。なお、この記事は Word2Vec のソースコードといくつかのペーパーを読んで自力で理解した内容になります。間違いが含まれている可能性もありますのでご了承ください。もし間違いを見つけた場合は指摘してもらえると

  • 【スライド公開☆】「ディープラーニングチュートリアル 応用編:言葉の『意味』表現〜word2vec〜」 | PR Blog

    【スライド公開☆】「ディープラーニングチュートリアル 応用編:言葉の『意味』表現〜word2vec〜」 PR Blog 2015.04.15 みなさんこんにちは 先日、アドテクスタジオが主催した 「ディープラーニングチュートリアル 応用編:言葉の『意味』表現〜word2vec〜」 の様子をお届けいたします おさらい ディーププランニングとは? Deep Learning(深層学習)は、機械学習の一種であるニューラルネットワークなどを用いた、人工知能技術の総称です。 画像認識のコンペティションで優勝するなど、近年話題を集めています。 広告業界では、広告のテキスト生成、関連度付けにおいて、 単語の意味をベクトルで表現し、単語間の意味類似度をスコア化することが重要となります。 今回、講演のメインテーマとなる「word2vec」 は、大規模データから単語の意味表現を学習する手法で、この分野における

    【スライド公開☆】「ディープラーニングチュートリアル 応用編:言葉の『意味』表現〜word2vec〜」 | PR Blog
  • ディープラーニングチュートリアル 応用編

    Transcript 1. 大規模データから単語の 意味表現学習-word2vec ボレガラ ダヌシカ 博士(情報理工学) 英国リバープール大学計算機科学科准教授 2. 2 2005 2008~10 学部 修士 博士 助教/講師 東京大学 工学部 東京大学大学院情報理工学系 文書自動要約における 重要文順序学習 同姓同名抽出 別名抽出 属性類似性計測 関係類似性計測 評判分類の分野適応 関係抽出の分野適応 進化計算を用いたWeb 検索結果順序学習 ソーシャルネットワーク の関係予測 対話型協調 Web検索エンジン 潜在関係検索 エンジン 自己紹介 専門分野:自然言語処理, 機械学習,データマイニング 2006~07 2010~13 2010~現在 准教授 リバープール大学 深層学習 3. 今回の講演の背景 •深層学習に関する活動 •2014年9月に深層学習のチュートリアルをCyberAge

    ディープラーニングチュートリアル 応用編
  • 1