(追記1)用語("in-sample", "out-of-sample")の使い方が不適切との指摘をいただきました.本記事の後半部にこの点,追記いたしました. (追記2)を後半部に加えました. Qiita投稿した後,内容の誤りに気がついても,手間を惜しんでそのままになってしまいがちである.ごく小さな誤記であればまだいいが,理論的な誤りや勘違いにおいては,間違った発信が続いていることには違いなく,反省しなければならない.(記事削除が手っ取り早いのですが,「いいね」がついていたりすると削除も失礼かと... ) さて,以前 回帰モデルの比較 - ARMA vs. Random Forest Regression - Qiita で時系列データからLag(遅れ)を特徴量として使う Random Forest回帰のやり方を紹介している. 今回は単変量の時系列データであるが,いくつかの過去のデータ使っ