本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
こんにちは。エンジニアの戸塚です。 自分へのクリスマスプレゼントとして PYNQ-Z1 を買ったので、25%ルール第一弾は「Deep Learning on FPGA入門」的なことをしてみたいと思います。 【DISCLAIMER】スタート時点でFPGA素人です。Courseraでちょうど年末からFPGAコースを開講していたので併行して勉強中です。間違ったことを書いていたら必要に応じて訂正を入れていきます。有識者の皆様のご指摘を歓迎します。 1. 購入から起動まで 前日譚 情報収集 PYNQ 高位合成(HLS) 注文 起動の前に PYNQシステムmicroSDカードの準備 起動! 2. Jupyter Notebookにアクセスする a) LAN経由でアクセス PYNQのJupyter Notebookのパスワード設定 b) LANケーブルでPCと直接接続 3. Jupyter Notebo
機械学習をやりたいんだけど、データがない!他のデータ使ってみたい! そんな方のために、機械学習に使えるオープンデータを集めました。 他にも、このデータセットオススメ!というものがあれば、是非ご紹介して頂けると嬉しいです。m(__)m UC Irvine Machine Learning Repository カリフォルニア大学アーバイン校が公開した、データセット。351件のデータセットがあり後述する DATA GO に比べれば少ないが、ほとんどがMachine Learning用のデータ・セットなので、かなりオススメ。 UCI Machine Learning Repository かの有名なあやめの花(iris)のデータセットもここから見ることができます。 国立情報学研究所 情報学研究データリポジトリ データセット一覧 yahoo,楽天,ニコニコなどのデータがあります。 DATA.GO.
ネットワークの重みや各ニューロンがどういう入力の時に発火するのかが、学習していく過程で各時刻可視化されてとても良い教材です。 http://playground.tensorflow.org/ うずまきのデータセットに関して「中間層が1層しかないとうずまき(線形非分離な問題)は解けない」という誤解があるようなので、まずは1層でできるという絵を紹介。なお僕のタイムライン上では id:a2c が僕より先に気付いていたことを名誉のために言及しておきます。 で、じゃあよく言われる「線形非分離な問題が解けない」ってのはどういうことか。それはこんな問題設定。入力に適当な係数を掛けて足し合わせただけでは適切な境界を作ることができません。 こういうケースでは中間層を追加すると、中間層が入力の非線形な組み合わせを担当してくれるおかげで解けなかった問題が解けるようになります。 1つ目のデータセットでは特徴量の
悩める作曲家のために、RNN(リカレントニューラルネットワーク)を利用して、曲のコード進行を生成するウェブサービス Deep Chordを作りました。本記事ではDeep Chordの概要を紹介します。 Deep Chord Deep ChordのRNNの学習・推定にはChainerを、ウェブ部分にはDjangoを利用しています。 Deep Chordの概要 コード進行って? 例えばピアノの鍵盤で「ド・ミ・ソ」とか「レ・ファ・ラ」とか、複数の音を同時に弾くと、それぞれ異なる響きになりますが、これを和音(コード)と呼びます。この和音が様々に遷移していくことで曲が出来上がるのですが、この和音の遷移こそがコード進行です。 コード進行には、多くの曲で利用される王道進行というものがあります。例えばJ-POPでは、F(ファ・ラ・ド) → G(ソ・シ・レ) → Em(ミ・ソ・シ) → Am(ラ・ド・ミ)、
最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日本語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日本語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下
皆さんこんにちは お元気ですか。私は全然です。 Deep Learning 一言で言うとただの深層学習ですが、 作り手や用途によって構造が全然違います。 今回は逆引き辞典よろしく、Deep Learningの実装のリンク集を作ってみました。 今回はライブラリは問わず、掲載します。 Caffe、Theano(Lasagne)、Torch7、Chainerなんでもござれです。 後日、追記するかも・・・ Neural Network(Full Connected) Auto Encoder Auto Encoder Denoising AutoEncoder Convolutional AutoEncoder Convolutional Neural Network Convolutional Neural Network R-CNN Fast-RCNN Faster-RCNN Recurren
これまでDeep LearningのアルゴリズムをTheanoで実装してきた(2015/4/29)けれど、ここらで巷で大人気のライブラリChainerにも手を出してみた。Theanoの勉強を始めたあとすぐにChainerが公開された(2015/6/9)がユーザや情報が増えるまで待っていた感じ(笑)最近はコードや実験結果などを公開してくれる人が増えてきたので非常に参考になっている。目についたものはてぶに登録しているので、興味を持った手法はがしがし勉強して追試していきたい。 Chainerのバージョンは1.3.2をベースにしている。1.3からPyCUDA/scikit-cudaを独自ライブラリのCuPyに置き換えたとのことで、以前のコードは少し修正しないと動かないようだ。その分、1.3からはインストールがシンプルになっていてとてもうれしい。1.1のころは、Chainerと直接関係ないPyCUD
Googleは、脳の活動を模したニューラルネットワークによって学習を実現する「ディープラーニング」をサポートした機械学習ライブラリ「TensorFlow」をオープンソースで公開しました。ライセンスはApache 2.0オープンソースラインセンスです。 Googleはすでに数年前からディープラーニングを同社のサービスに組み込んでいます。「私たちが社内でディープラーニングの基盤である「DistBelief」を開発したのは2011年のことだ」(ブログ「TensorFlow - Google’s latest machine learning system, open sourced for everyone」から)。 TensorFlowは、このDistBeliefをさらに強化したものだと説明されています。 TensorFlow is general, flexible, portable, e
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く