タグ

Wikipediaとアルゴリズムに関するtyosuke2011のブックマーク (8)

  • 進化的アルゴリズム - Wikipedia

    進化的アルゴリズム(しんかてきアルゴリズム、evolutionary algorithm、EAと略記)は進化的計算の一分野を意味し、人工知能の一部である。個体群ベースのメタヒューリスティックな最適化アルゴリズムの総称である。そのメカニズムとして生殖、突然変異、遺伝子組み換え、自然淘汰、適者生存といった進化の仕組みに着想を得たアルゴリズムを用いる。最適化問題の解の候補群が生物の個体群の役割を果たし、コスト関数によってどの解が生き残るかを決定する。それが繰り返された後、個体群の進化が行われる。 EAの例を以下に示す。これらの技法は質的には同様だが、実装の詳細は異なっており、適用される問題の分野が異なる。 遺伝的アルゴリズム これは EA の中でも最も一般的な手法である。問題の解を探索するにあたって数値の列を使用し(2進数を使うのが古典的だが、解決すべき問題に合わせて最適な形式が選択され、2進

  • EMアルゴリズム - Wikipedia

    EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメータを最尤推定する手法の一つであり、観測不可能な潜在変数に確率モデルが依存する場合に用いられる。EM法、期待値最大化法(きたいちさいだいかほう)[1][2]とも呼ばれる。その一般性の高さから、機械学習音声認識、因子分析など、広汎な応用がある[1]。 EMアルゴリズムは反復法の一種であり、期待値(英: expectation, E) ステップと最大化 (英: maximization, M)ステップを交互に繰り返すことで計算が進行する。Eステップでは、現在推定されている潜在変数の分布に基づいて、モデルの尤度の期待値を計算する。Mステップでは、E ステップで求まった尤度の期待値を最大化するようなパラメータを求める。M ステップで求まったパラメータは、次の E

    EMアルゴリズム - Wikipedia
  • モンテカルロ法 - Wikipedia

    モンテカルロ法(モンテカルロほう、(英: Monte Carlo method、MC)とはシミュレーションや数値計算を乱数を用いて行う手法の総称。元々は、中性子が物質中を動き回る様子を探るためにスタニスワフ・ウラムが考案しジョン・フォン・ノイマンにより命名された手法。カジノで有名な国家モナコ公国の4つの地区(カルティ)の1つであるモンテカルロから名付けられた。ランダム法とも呼ばれる。 計算理論[編集] 計算理論の分野において、モンテカルロ法とは誤答する確率の上界が与えられる乱択アルゴリズム(ランダム・アルゴリズム)と定義される[1]。一例として素数判定問題におけるミラー-ラビン素数判定法がある。このアルゴリズムは与えられた数値が素数の場合は確実に Yes と答えるが、合成数の場合は非常に少ない確率ではあるが No と答えるべきところを Yes と答える場合がある。一般にモンテカルロ法は独立

    モンテカルロ法 - Wikipedia
  • Standard Template Library - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "Standard Template Library" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2012年8月) Standard Template Library (STL) は、プログラミング言語C++の規格で定義された標準ライブラリの一つ。ヒューレット・パッカード社在籍の研究者(当時)であったアレクサンドル・ステパノフ等によって考案され、後にANSI/ISO標準に組み込まれた。 概要[編集] STLは、その名の通りC++の比較的新しい機能であるテンプレートを最大限に生かす構成を取っており、コンテナ、イテレータ(反復子)、アルゴリ

  • A* - Wikipedia

    A*探索アルゴリズム A*(A-star、エースター)探索アルゴリズム(エースターたんさくアルゴリズム)は、グラフ探索アルゴリズムの一つ。 最良優先探索を拡張したZ*に、さらにf値として「現時点までの距離」g と「ゴールまでの推定値」h の和を採用したもの[1]。h は ヒューリスティック関数と呼ばれる。 概要[編集] A* アルゴリズムは、「グラフ上でスタートからゴールまでの道を見つける」というグラフ探索問題において、 ヒューリスティック関数 h(n) という探索の道標となる関数を用いて探索を行うアルゴリズムである。h は各頂点 n からゴールまでの距離のある妥当な推定値を返す関数で、解くグラフ探索問題の種類に応じてさまざまな h を設計することが出来る。 例えば、カーナビなどで用いられる単純な二次元の地図での探索では、h としてユークリッド距離 を使うことができ、この値は道に沿った実際

    A* - Wikipedia
  • ユークリッドの互除法 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euclidean algorithm|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につい

    ユークリッドの互除法 - Wikipedia
  • アルゴリズム - Wikipedia

    アルゴリズム(英: algorithm[注 1])とは、解が定まっている「計算可能」問題に対して、その解を正しく求める手続きをさす[注 2]。あるいはそれを形式的に表現したもの。 実用上は、アルゴリズムの実行に要する記憶領域の大きさや完了までに要する時間(空間計算量と時間計算量)が小さいこと、特に問題の規模を大きくした際に必要な記憶領域や計算量が急激に大きくならないことが重要となる。 アルゴリズムの実行は形態によらない。コンピュータプログラムはコンピュータ上に実装されたアルゴリズムの例である。 概要[編集] フローチャートはアルゴリズムの視覚的表現としてよく使われる。これはランプがつかない時のフローチャート。 岩波国語辞典「算法」に、まず「計算の方法」とした後に2番目の詳細な語義でalgorithmの訳として、 特に、同類の問題一般に対し、有限回の基的操作を、指示の順を追って実行すれば、

    アルゴリズム - Wikipedia
  • ビタビアルゴリズム - Wikipedia

    ビタビアルゴリズム(英: Viterbi algorithm)は、観測された事象系列を結果として生じる隠された状態の最も尤もらしい並び(ビタビ経路と呼ぶ)を探す動的計画法アルゴリズムの一種であり、特に隠れマルコフモデルに基づいている。観測された事象系列の確率計算のアルゴリズムである 前向きアルゴリズム(英: forward algorithm)も密接に関連している。これらのアルゴリズムは情報理論の一部である。 このアルゴリズムには、いくつかの前提条件がある。まず、観測された事象と隠されている事象は1つの系列上に並んでいる。この系列は多くの場合時系列である。次に、これら2つの並びには一対一の対応があり、1つの観測された事象は正確に1つの隠されている事象に対応している。第三に、時点 での最も尤もらしい隠されている事象の計算は、 での観測された事象と での最も尤もらしい隠された事象の系列のみに依

  • 1