エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント3件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
EMアルゴリズム - Wikipedia
EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメ... EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメータを最尤推定する手法の一つであり、観測不可能な潜在変数に確率モデルが依存する場合に用いられる。EM法、期待値最大化法(きたいちさいだいかほう)[1][2]とも呼ばれる。その一般性の高さから、機械学習、音声認識、因子分析など、広汎な応用がある[1]。 EMアルゴリズムは反復法の一種であり、期待値(英: expectation, E) ステップと最大化 (英: maximization, M)ステップを交互に繰り返すことで計算が進行する。Eステップでは、現在推定されている潜在変数の分布に基づいて、モデルの尤度の期待値を計算する。Mステップでは、E ステップで求まった尤度の期待値を最大化するようなパラメータを求める。M ステップで求まったパラメータは、次の E
2024/01/16 リンク