タグ

Wikipediaとalgorithmに関するtyosuke2011のブックマーク (9)

  • ファジィ論理 - Wikipedia

    ファジィ論理(ファジィろんり、英: Fuzzy logic)は、1965年、カリフォルニア大学バークレー校のロトフィ・ザデーが生み出したファジィ集合から派生した[1][2]多値論理の一種で、真理値が0から1までの範囲の値をとり、古典論理のように「真」と「偽」という2つの値に限定されない[3]ことが特徴である。ファジィ論理は制御理論(ファジィ制御)から人工知能まで様々な分野に応用されている。 ファジィ論理と確率論理は数学的に似ており、どちらも0から1までの値を真理値とするが、概念的には解釈の面で異なる。ファジィ論理の真理値が「真の度合い」に対応しているのに対し、確率論理では「確からしさ」や「尤もらしさ」に対応している。このような違いがあるため、ファジィ論理と確率論理では同じ実世界の状況に異なるモデルを提供する。 真理値と確率が0から1の範囲の値をとるため、表面的には似ているように思われる。例

    ファジィ論理 - Wikipedia
  • 進化的アルゴリズム - Wikipedia

    進化的アルゴリズム(しんかてきアルゴリズム、evolutionary algorithm、EAと略記)は進化的計算の一分野を意味し、人工知能の一部である。個体群ベースのメタヒューリスティックな最適化アルゴリズムの総称である。そのメカニズムとして生殖、突然変異、遺伝子組み換え、自然淘汰、適者生存といった進化の仕組みに着想を得たアルゴリズムを用いる。最適化問題の解の候補群が生物の個体群の役割を果たし、コスト関数によってどの解が生き残るかを決定する。それが繰り返された後、個体群の進化が行われる。 EAの例を以下に示す。これらの技法は質的には同様だが、実装の詳細は異なっており、適用される問題の分野が異なる。 遺伝的アルゴリズム これは EA の中でも最も一般的な手法である。問題の解を探索するにあたって数値の列を使用し(2進数を使うのが古典的だが、解決すべき問題に合わせて最適な形式が選択され、2進

  • EMアルゴリズム - Wikipedia

    EMアルゴリズム(英: expectation–maximization algorithm)とは、統計学において、確率モデルのパラメータを最尤推定する手法の一つであり、観測不可能な潜在変数に確率モデルが依存する場合に用いられる。EM法、期待値最大化法(きたいちさいだいかほう)[1][2]とも呼ばれる。その一般性の高さから、機械学習音声認識、因子分析など、広汎な応用がある[1]。 EMアルゴリズムは反復法の一種であり、期待値(英: expectation, E) ステップと最大化 (英: maximization, M)ステップを交互に繰り返すことで計算が進行する。Eステップでは、現在推定されている潜在変数の分布に基づいて、モデルの尤度の期待値を計算する。Mステップでは、E ステップで求まった尤度の期待値を最大化するようなパラメータを求める。M ステップで求まったパラメータは、次の E

    EMアルゴリズム - Wikipedia
  • ヒープソート - Wikipedia

    ヒープソート (heap sort) とはリストの並べ替えを二分ヒープ木を用いて行うソートのアルゴリズムである[2](ヒープ領域とは無関係であることに注意する)。 アルゴリズムは、以下のように2つの段階から構成される。 未整列のリストから要素を取り出し、順にヒープに追加する。すべての要素を追加するまで繰り返し。 ルート(最大値または最小値)を取り出し、整列済みリストに追加する。すべての要素を取り出すまで繰り返し。 計算量は O となる[2]。安定ソートではない[2]。 ヒープ構造は、ポインタ等の制御用データが不要で、データ自体の並び順(配列)だけで表現できるという利点がある。ヒープソートを実装する際にはこの利点を生かし、元のデータ領域をそのままヒープ構造や整列済みリストに転用するインプレースなソートとして実装することが多い。 最初にN個のデータを含む配列が与えられるものとする。添字は1 〜

    ヒープソート - Wikipedia
  • 黄金分割探索 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Golden-section search|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針に

    黄金分割探索 - Wikipedia
  • トポロジカルソート - Wikipedia

    トポロジカルソート(英: topological sort)は、グラフ理論において、有向非巡回グラフ(英: directed acyclic graph, DAG)の各ノードを順序付けして、どのノードもその出力辺の先のノードより前にくるように並べることである。有向非巡回グラフは必ずトポロジカルソートすることができる。 有向非巡回グラフのノードの集合に到達可能性関係 R (ノード x から y への(各辺の向きに逆行しない)経路が存在するとき、またそのときに限り xRy とする)を定めると、R は半順序関係となる。トポロジカルソートとは、この R を全順序になるように拡張したものとみなせる。 トポロジカルソートの典型的な利用例はジョブのスケジューリングである。トポロジカルソートのアルゴリズムはPERTというプロジェクト管理手法[1]のスケジューリングのために1960年代初頭に研究が開始された

    トポロジカルソート - Wikipedia
  • A* - Wikipedia

    A*探索アルゴリズム A*(A-star、エースター)探索アルゴリズム(エースターたんさくアルゴリズム)は、グラフ探索アルゴリズムの一つ。 最良優先探索を拡張したZ*に、さらにf値として「現時点までの距離」g と「ゴールまでの推定値」h の和を採用したもの[1]。h は ヒューリスティック関数と呼ばれる。 A* アルゴリズムは、「グラフ上でスタートからゴールまでの道を見つける」というグラフ探索問題において、 ヒューリスティック関数 h(n) という探索の道標となる関数を用いて探索を行うアルゴリズムである。h は各頂点 n からゴールまでの距離のある妥当な推定値を返す関数で、解くグラフ探索問題の種類に応じてさまざまな h を設計することが出来る。 例えば、カーナビなどで用いられる単純な二次元の地図での探索では、h としてユークリッド距離 を使うことができ、この値は道に沿った実際の距離のおおま

    A* - Wikipedia
  • アルゴリズム - Wikipedia

    アルゴリズム(英: algorithm[注 1])とは、解が定まっている「計算可能」問題に対して、その解を正しく求める手続きをさす[注 2]。あるいはそれを形式的に表現したもの。 実用上は、アルゴリズムの実行に要する記憶領域の大きさや完了までに要する時間(空間計算量と時間計算量)が小さいこと、特に問題の規模を大きくした際に必要な記憶領域や計算量が急激に大きくならないことが重要となる。 アルゴリズムの実行は形態によらない。コンピュータプログラムはコンピュータ上に実装されたアルゴリズムの例である。

    アルゴリズム - Wikipedia
  • マルコフ連鎖 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マルコフ連鎖" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年1月) マルコフ連鎖(マルコフれんさ、英: Markov chain)とは、確率過程の一種であるマルコフ過程のうち、とりうる状態が離散的(有限または可算)なもの(離散状態マルコフ過程)をいう。また特に、時間が離散的なもの(時刻は添え字で表される)を指すことが多い[注釈 1]。マルコフ連鎖は、未来の挙動が現在の値だけで決定され、過去の挙動と無関係である(マルコフ性)。各時刻において起こる状態変化(遷移または推移)に関して、マルコフ連鎖は遷移確率が過去の状態によらず、

  • 1