最近、Twitterのデータを収集しています。APIで取得したtweet本文や、そこから抽出したURLを片っ端からDBに保存していくと件数が莫大になるので、ディスクスペースを極力節約したいところですが、個別のtweet本文や言及URLは短い文字列なので、普通に1件ずつgzip等で圧縮してもほとんど意味がないか、オーバーヘッドが出て逆効果になってしまいます。 そこで、収集済みのサンプルデータを元にハフマン木を作っておき、それを共通利用してtweetを圧縮してみました。 用意したのは、英語ユーザ/日本語ユーザ/韓国語ユーザ各1000人のtweetサンプルをベースにしたハフマン符号と、tweet本文から抽出したURL文字列をベースにしたハフマン符号の4種類です。 頻度表は次のようになりました。 char (en) freq (en) char (ja) freq (ja) char (ko) f