イノベーションセンター テクノロジー部門 Generative AI PJ の内部勉強会で発表した資料です。Retrieval-Augmented Generation (RAG) において重要な役割を果たす埋め込みモデル(特に日本語に特化したもの)について整理しました。
[ GitHub | Notebook | Anyscale Endpoints | Ray Docs] · 55 min read Note: Check out the new evaluation reports and cost analysis with mixtral-8x7b-instruct-v0.1 and our data flywheel workflow to continuously improve our RAG applications. In this guide, we will learn how to: 💻 Develop a retrieval augmented generation (RAG) based LLM application from scratch. 🚀 Scale the major workloads (load, ch
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く