こんにちは!MLエンジニアのたかぱい(@takapy)です。 今回は、ママリのアプリ内にレコメンドエンジンを導入したので、導入までの取り組みやアーキテクチャについてご紹介できればと思います。 目次 ママリ内での課題 アーキテクチャ概要 EDAとアルゴリズムについて オフライン検証の失敗と学び A/Bテストについて レコメンドアルゴリズムについて 強調フィルタリング(アイテムベース) Matrix Factorization 最後に ママリ内での課題 ママリはサービスとして6年目を迎え、サービスの成長とともにアプリ内の記事数も増えており、それに伴いユーザーが本来欲しい情報にたどり着くことも難しくなってきました。 加えて「子育て層のユーザー」という切り口1つとっても、0才児のママと1才児のママでは悩みや欲しい情報がまったく異なります。 このような背景から、これまで人的に行っていたルールベースで