タグ

Algorithmとbayesianに関するyassのブックマーク (3)

  • 統計的機械学習入門 | 中川研究室

    導入pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 最尤推定、MAP推定 データの性質 情報理論の諸概念 (KL-divergenceなど) 距離あるいは類似度 数学のおさらいpdf 行列の微分 線形代数学の役立つ公式 多次元正規分布 条件付き正規分布 Bayes推論pdf Bayseによる確率分布推定の考え方 多項分布、ディリクレ分布 事前分布としてのディリクレ分布の意味<\li> 正規分布と事後分布 指数型分布族 自然共役事前分布の最尤推定 線形回帰および識別pdf 線形回帰のモデル 正則化項の導入 L2正則化 L1正則化 正則化項のBayes的解釈 線形識別 2乗誤差最小化の線形識別の問題点 生成モデルを利用した識別 学習データと予測性能pdf 過学習 損失関数と Bias,Variance, Noise K-Nearest Neighbor法への応用 b

  • Graham Neubig - チュートリアル資料

    学校での講義 Fall 2024: Advanced NLP (CS11-711 @ CMU) Spring 2024: Advanced NLP (CS11-711 @ CMU) Fall 2022: Advanced NLP (CS11-711 @ CMU) Spring 2022: Multilingual NLP (CS11-737 @ CMU) Fall 2021: Advanced NLP (CS11-711 @ CMU) Spring 2021: Neural Networks for NLP (CS11-747 @ CMU) Fall 2020: Multilingual NLP (CS11-737 @ CMU) Spring 2020: Neural Networks for NLP (CS11-747 @ CMU) Fall 2019: Machine Translat

  • Bayesian Sets - mots quotidiens.

    Bayesian Sets (Ghahramani and Heller, NIPS 2005)は Google Sets と同じようなことをベイズ的に行うアルゴリズムです。 いくつかアイテムを入れると, それを「補完する」ようなアイテムを 返してくれます。 これは NIPS の accepted papers が出た去年の8月から気になっていて, 会議ではオーラルの発表もあって大体のやっていることはわかった ものの, 何と(会議の時も!)論文がなく, 直接Hellerに連絡して もらえるように頼んでいたところ, Online proceedings の締切りがあった 時に連絡があって, 読めるようになりました。(リンクは下のページ参照) 岡野原君に先に 紹介 されてしまいましたが, 以下は, 岡野原君が書いていない話。 Bayesian Sets は, アイテム集合 D に対して,

  • 1