タグ

機械学習とpythonに関するymzkeyのブックマーク (2)

  • リッジ回帰やラッソ回帰で因果推論できるのか? - Qiita

    はじめに 因果推論を行う手法の1つとして、線形回帰が挙げられます。今回は、その線形回帰の拡張とも言えるリッジ回帰(Ridge回帰)やラッソ回帰(Lasso回帰)を用いて因果効果を推定してみるとどうなるのか、Pythonによるシミュレーションと共にまとめました。内容に誤り等ございましたら、ぜひご指摘いただけますと幸いです。 結論 リッジ回帰やラッソ回帰を用いると、うまく因果効果を推定することができません。 これは、リッジ回帰やラッソ回帰を行うことで、線形回帰(線形回帰モデルをOLS推定)による推定値よりも汎化誤差が小さくなる一方で、不偏性と呼ばれる因果効果をバイアスなく推定するために必要な性質が失われてしまうからです。 通常の線形回帰における最小二乗法(OLS)では、下記の損失関数を最小化するパラメータを求めます。

    リッジ回帰やラッソ回帰で因果推論できるのか? - Qiita
  • 機械学習の情報を手法を中心にざっくり整理 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 概要 自分用のメモとして、機械学習に関する情報を浅く ( それなりに ) 広くをモットーに、ざっくり整理してみました。 少しでも、他の方の理解に役立ったら嬉しいです。 機械学習とは コンピュータプログラムが経験によって自動的に出力結果を改善していく仕組み。 手法 機械学習の代表的な手法について記載します。 1.教師あり学習 2.教師なし学習 3.強化学習 に分けて記載しました。 ※概要説明は一例です。 1.教師あり学習 1-1.線形回帰 予測したい値を算出する式を連続する多項式として表し、各係数を最小二乗法や最尤推定法で求めることでモデ

    機械学習の情報を手法を中心にざっくり整理 - Qiita
  • 1