タグ

画像処理と科学に関するyocchan731のブックマーク (2)

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • 覆面していても顔認識できる新しいアルゴリズム | WIRED VISION

    覆面していても顔認識できる新しいアルゴリズム 2008年3月26日 サイエンス・テクノロジー コメント: トラックバック (0) Bryan Gardiner Allen Yang氏の顔認識アルゴリズムを使うと、たとえ画像が破損していたり、部分的にさえぎられていても、該当する人物を的確に見つけ出すことが可能だ。Photo: Allen Yang 忍者の覆面はもう意味がない。カリフォルニア大学バークレー校とイリノイ大学アーバナ・シャンペーン校(UIUC)の研究者たちが開発した新しい顔認識アルゴリズムは、たとえ目、鼻、口の部分が不明瞭でも、90%から95%の正確さで個人の顔を認識できるのだ。 「多くのアルゴリズムでは、目、鼻、口といったいわゆる重要な顔の特徴を使って個人を確認している」と、新しいアルゴリズムを開発したバークレー校工学部の研究者Allen Yang氏は述べる。 「しかし、それだと

  • 1