KubeflowとJupyter Enterprise GatewayでJupyter Notebook環境をさらに便利に AI事業本部のインフラ組織SIAでエンジニアをしている牧垣です。 はじめに Jupyter Notebookは機械学習・データ解析の分野ではすっかり空気のようなインフラになりました。仮説・実験・考察のサイクルを回しやすいので、科学分野では昔から人気があります。コードと結果が可視化できるという基本機能そのものに、作業ログや手順書・使い方ドキュメントなど、他分野での需要もあります。 夢を膨らませると用途はまだまだ思いつきそうですが、つまり「複数人で同じものを見て、同じ認識をすることができる」というのがJupyter Notebookの良いところです。「あの件、どうだった?」「あ、たぶん大丈夫だと思います」といったあやしげな状態になりにくくなります。また、可視化が容易な点も