導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 本記事では、LLMを使用したレコメンドエンジン作成のフレームワークについて、簡潔に解説していきます。 サマリー LLMを使用したレコメンドエンジン作成のフレームワーク(以降、「提案されたレコメンドエンジン」)は、Amazonの研究チームによって発表された論文で提唱されました。 このレコメンドエンジンの特徴は、ファインチューニングを利用していないLLMとユーザーの行動(商品のクリックなど)情報を元に、レコメンドの性能を継続的に改善できる点です。ユーザーの行動をもとに、LLMにより関連性の高い商品を推測させることでレコメンドの性能を上げています。 より詳細な解説は以下の記事、もしくは論文を参照してください。