タグ

ブックマーク / zenn.dev/knowledgesense (5)

  • LLMで学習不要のレコメンドエンジンを実現

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、LLMを使用したレコメンドエンジン作成のフレームワークについて、簡潔に解説していきます。 サマリー LLMを使用したレコメンドエンジン作成のフレームワーク(以降、「提案されたレコメンドエンジン」)は、Amazonの研究チームによって発表された論文で提唱されました。 このレコメンドエンジンの特徴は、ファインチューニングを利用していないLLMとユーザーの行動(商品のクリックなど)情報を元に、レコメンドの性能を継続的に改善できる点です。ユーザーの行動をもとに、LLMにより関連性の高い商品を推測させることでレコメンドの性能を上げています。 より詳細な解説は以下の記事、もしくは論文を参照してください。

    LLMで学習不要のレコメンドエンジンを実現
  • スクリーンショットを使ってRAGの精度向上。「DSE」を解説

    はじめまして。ナレッジセンスの門脇です。生成AIやRAGシステムを活用したサービスを開発しています。記事では、RAGの性能を高める手法である「Document Screenshot Embedding(DSE)」について、ざっくり理解します。 この記事は何 この記事は、RAGの文書検索精度を高めるための論文「Document Screenshot Embedding(DSE)」[1]について、日語で簡単にまとめたものです。 「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 題 ざっくりサマリー Document Screenshot Embedding(DSE)は、RAGシステムの一部分を効率化する手法です。具体的には、「ユーザーの質問に対して最適な文書を検索をする」部分の性能を高めます。ウォータールー大学の研究者らによって202

    スクリーンショットを使ってRAGの精度向上。「DSE」を解説
  • RAGで人間の脳を再現。「HippoRAG」を理解する

    はじめまして。ナレッジセンスの門脇です。生成AIやRAGシステムを活用したサービスを開発しています。記事では、RAGの性能を高める手法である「HippoRAG」について、ざっくり理解します。 この記事は何 この記事は、RAGの新手法として最近注目されている「HippoRAG」の論文[1]について、日語で簡単にまとめたものです。 「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 題 ざっくりサマリー HippoRAGは、RAGの性能を高めるための新しい手法です。オハイオ州立大学の研究者らによって2024年5月に提案されました。HippoRAGを使うメリットは、複数の知識を組み合わせて回答する必要があるような、複雑な質問に強くなることです。HippoRAGが従来のRAGに比べて、複雑な質問に強い理由は、ナレッジグラフと、それを継続的に

    RAGで人間の脳を再現。「HippoRAG」を理解する
  • GNN-RAGで7BモデルでもGPT-4と同等の性能を引き出す

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 RAGのシステムでは一般的に、断片化されたテキストをEmbeddingによってベクトル化し、関連する情報を検索、そして質問に回答するという形式が採用されるかと思います。 しかし来、RAGのデータソースは断片化されたテキストに限定はされていません。その一つとして、Knowledge Graph(知識グラフ)というものが存在します。 記事では、そんなKnowledge Graphを利用した新しいRAGのシステム、GNN-RAGについて紹介します。 サマリー GNN-RAGは、Knowledge Graphから関連するデータの取得にGNNを使用します。この手法を利用することで、既存のKnowledge Gr

    GNN-RAGで7BモデルでもGPT-4と同等の性能を引き出す
  • RAGでの回答精度向上のためのテクニック集(RAGとは何か)

    はじめまして。株式会社ナレッジセンスの門脇です。普段はエンジニアPMとして、「社内データに基づいて回答してくれる」チャットボットをエンタープライズ企業向けに提供しています(一応、200社以上に導入実績あり)。ここで開発しているチャットボットは、ChatGPTを始めとしたLLM(Large Language Models)を活用したサービスであり、その中でもRAG(Retrieval Augmented Generative)という仕組みをガッツリ利用しています。記事では、RAG精度向上のための知見を共有していきます。 はじめに この記事は何 この記事は、LlamaIndexのAndrei氏による『A Cheat Sheet and Some Recipes For Building Advanced RAG』[1]という記事で紹介されている「RAGに関するチートシート」について、And

    RAGでの回答精度向上のためのテクニック集(RAGとは何か)
  • 1