Deep Learningで将棋の評価関数の学習を行う。仮に、ResNetと呼ばれる画像識別でよく用いられるアーキテクチャを評価関数に使うとしよう。 このとき、ResNetのブロック数(≒層の数)を増やしたり、幅(中間層の特徴量の数)を広げたりすると学習能力は高くなる。 層数が20ブロックで幅が256のことをResNet20x256というように表記するとして、ResNet20x256とResNet18x288とではどちらが優れているか?みたいな問題がある。 いま話を簡単にするために1回の推論に要する時間はほぼ同じAとBのアーキテクチャがあり、どちらが優れているかを判断したいとする。 本当は、サチる(これ以上学習できなくなる)ところまで実際に学習させてみて、その時のaccuracy(強いソフトの棋譜の指し手を正解手としてそれとの一致率)が高いほうを見るのが手堅いのだが、サチるまで学習させる計