そう言えば3年前にこんなまとめ的エントリを書いたのでした。この内容はそのままかなりの部分が2年前に刊行した拙著の原案にもなったということで、色々思い出深いエントリです。 なのですが。・・・この3年の間に統計学・機械学習・データマイニングの諸手法及びそれを取り巻くビジネスニーズには様々な進歩があり、そろそろこの内容にも陳腐化が目立つようになってきました。ということで、3年間の進歩を反映してアップデートした記事を書いてみようと思います。前回は「10選」でしたが、今回は「10+2選」に改めました。そのラインナップは以下の通り。 統計学的検定(t検定・カイ二乗検定・ANOVAなど) t検定 カイ二乗検定 ANOVA(分散分析) その他の検定 重回帰分析(線形回帰モデル) 一般化線形モデル(GLM:ロジスティック回帰・ポアソン回帰など) ロジスティック回帰 ポアソン回帰 正則化(L1 / L2ノルム