タグ

pythonと可視化に関するFluss_kawaのブックマーク (2)

  • Python pandas プロット機能を使いこなす - StatsFragments

    pandas は可視化のための API を提供しており、折れ線グラフ、棒グラフといった基的なプロットを簡易な API で利用することができる。一般的な使い方は公式ドキュメントに記載がある。 Visualization — pandas 0.17.1 documentation これらの機能は matplotlib に対する 薄い wrapper によって提供されている。ここでは pandas 側で一処理を加えることによって、ドキュメントに記載されているプロットより少し凝った出力を得る方法を書きたい。 補足 サンプルデータに対する見せ方として不適切なものがあるが、プロットの例ということでご容赦ください。 パッケージのインポート import matplotlib.pyplot as plt plt.style.use('ggplot') import matplotlib as mpl m

    Python pandas プロット機能を使いこなす - StatsFragments
  • 多層パーセプトロンの動きを可視化する - StatsFragments

    概要 多層パーセプトロン記事の補足。下の記事の最後で、入力されたデータを隠れ層で線形分離しやすい形に変換している、ということを確かめたかったが、MNIST データでは次元が高すぎてよくわからなかった。ということで、もうちょっとわかりやすい例を考える。 可視化シリーズとしては以下の記事のつづき。 ロジスティック回帰 (勾配降下法 / 確率的勾配降下法) を可視化する - StatsFragments 多層パーセプトロンとは 詳細は上記の記事参照。この記事では、以下のような多層パーセプトロンを例とする。 入力層のユニット数が 2 隠れ層のユニット数が 3 出力層のユニット数が 2 つまり、入力層として 2 次元のデータを受けとり、隠れ層で 3 次元空間へ写像してロジスティック回帰 ( 出力は2クラス ) を行う。 サンプルデータ 2 次元で線形分離不可能なデータでないとサンプルの意味がない。こ

    多層パーセプトロンの動きを可視化する - StatsFragments
  • 1