タグ

algorithmとprogrammingに関するGlnのブックマーク (54)

  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • アルゴリズムパズル

    大学で計算機科学を教える著者が、「パズルを解くことで、アルゴリズム的思考を鍛える」というコンセプトに基づいて、古今東西150の「アルゴリズム的」な数学パズルを収録。優れたアルゴリズム設計戦略と分析テクニックを通して、アルゴリズム的思考と柔軟な発想を育てます。また、近年では、入社試験にパズル的な難問を出す企業も増えており、その対策としても役立つ一冊です。 質問形式の序文 謝辞 パズル一覧 チュートリアルのパズル 編のパズル 墓碑銘パズル 第1章 チュートリアル 一般的なアルゴリズム設計戦略 魔方陣(Magic Square) nクイーン問題(The n-Queens Problem) 有名人の問題(Celebrity Problem) 数当てゲーム(Number Guessing)(別名20の扉(Twenty Questions)) トロミノ・パズル(Tromino Puzzle) アナグ

    アルゴリズムパズル
  • 情報系修士にもわかるダブル配列 - アスペ日記

    最近話題の「日本語入力を支える技術」を途中まで読んだ。 3章がものすごく気合いが入っている。 trie(トライ)というデータ構造の2つの実装、「ダブル配列」と「LOUDS」について詳しく説明がされている。 ダブル配列については、ぼくは以前論文を読んで勉強しようとしたのだが、その時は難しくてあきらめた覚えがある。しかし、このの説明を読むことで理解ができた。 ありがたい。 感銘を受けたので、このを教材に友達と2人勉強会をした。 この2人勉強会というのは、ぼくが復習を兼ねて友達に教えるというのがだいたいのスタイル。 しかし、いざやってみるといろいろと難しい。 次のようなところでひっかかるようだ。 例のサイズが小さく、イメージを喚起するのが難しい。 最初の図のノード番号と、最終的なダブル配列上の位置が異なるため、混乱する。 単語終端について言及がないので、どのノードが単語を表しているかがわから

    情報系修士にもわかるダブル配列 - アスペ日記
  • 実践・最強最速のアルゴリズム勉強会 第二回講義資料(ワークスアプリケーションズ & AtCoder)

    最小カットを使って「燃やす埋める問題」を解く方法について、問題とソースコードつきで、まとめました。ニコニコ生放送「TopCoderでプログラムしてみた」2000回記念放送の資料です。

    実践・最強最速のアルゴリズム勉強会 第二回講義資料(ワークスアプリケーションズ & AtCoder)
  • スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C ) | 配電盤

    魔方陣の解の列挙は並列化しやすそうな問題ですが、ここでの方針では、探索効率を上げるためには条件分岐が不可欠なので、(「数」を求めるだけだとしても)GPGPUでうまくやる方法がわかりません。そこで、CPUに載っているコアのみで並列化します(Xeon Phiなら簡単なのでしょうか→追記参照)。 一番外側の、0から(1<<25)-1まで変化する変数iのループをOpenMPで並列化します(schedule(guided)では遅くなります。schedule(auto)はVisual C++でサポートされたら試します)。変数iは上の図の緑の部分(カンで5個にしました)を各数5ビットで表現し、つなげたものです。マスに入りうる数は1から25までなので、5ビットというのはちょっと冗長ですが、とりあえずはよしとしましょう。 出力はバイナリ形式で、1つの解に25バイト使います(1つのマスに入る数を1バイトで表現

    スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C ) | 配電盤
  • Amazon.co.jp: 形と動きの数理: 工学の道具としての幾何学: 杉原厚吉: 本

    Amazon.co.jp: 形と動きの数理: 工学の道具としての幾何学: 杉原厚吉: 本
  • 細かすぎて伝わりにくいTopCoderのコーディングスキル向上マジック

    細かすぎて伝わりにくいTopCoderのコーディングスキル向上マジック:最強最速アルゴリズマー養成講座(1/3 ページ) 競技プログラミングはレベルの高い人たちの集まり――そんな考えを持っている初心者の方、TopCoderはあなたのコーディングスキルを爆発的に高める魔法のような場です。今回は、初心者にこそお勧めしたいTopCoderの魅力について考えます。 教育的な観点から見るTopCoder 今回からTopCoderに関する実践的アルゴリズムを解説していく予定でしたが、序盤のうちに触れておきたいことがありましたので、今回の枕は“教育的視点から見るTopCoder”というテーマで少し書こうかと思います。 まず、最初に宣言しておきたいことは、この連載は初心者向きである、ということです。「どう考えても上級者向けだろう」という意見はたくさんの方から寄せられていますが、筆者は、まだプログラミングレ

    細かすぎて伝わりにくいTopCoderのコーディングスキル向上マジック
  • ウェーブレット木の世界 - Preferred Networks Research & Development

    岡野原です。ウェーブレット木の解説を統数研チャンネルにて行いました。 統数研チャンネル(プレミアム会員ならしばらくタイムシフト視聴可能)。 ウェーブレット木は万能のデータ構造であり、系列データ、全文検索、グラフ、二次元情報、フィンガープリントなど様々なデータに対して多くの操作をサポートします。 解説では大規模データの背景、ウェーブレット木の作り方、使い方、様々なデータへの適用、最前線(ウェーブレット行列)などを紹介しています。解説は拙著「高速文字列解析の世界」とあわせてみていただけたらと思います。

    ウェーブレット木の世界 - Preferred Networks Research & Development
  • Bayesian Sets - mots quotidiens.

    Bayesian Sets (Ghahramani and Heller, NIPS 2005)は Google Sets と同じようなことをベイズ的に行うアルゴリズムです。 いくつかアイテムを入れると, それを「補完する」ようなアイテムを 返してくれます。 これは NIPS の accepted papers が出た去年の8月から気になっていて, 会議ではオーラルの発表もあって大体のやっていることはわかった ものの, 何と(会議の時も!)論文がなく, 直接Hellerに連絡して もらえるように頼んでいたところ, Online proceedings の締切りがあった 時に連絡があって, 読めるようになりました。(リンクは下のページ参照) 岡野原君に先に 紹介 されてしまいましたが, 以下は, 岡野原君が書いていない話。 Bayesian Sets は, アイテム集合 D に対して,

  • Amazon CAPTCHA

    Amazon CAPTCHA
  • ビットを数える・探すアルゴリズム

    作成日:2004.05.04 修正日:2012.09.01 このページは 2003年の9/11、9/28 の日記をまとめて作成。 はじめに PowerPC 系や Alpha などには population count と呼ばれるレジスタ中の立っているビット数を数える命令が実装されている。 集合演算を行うライブラリを実装したい場合などに重宝しそうな命令である。 職場でこの population count 命令について話をしているうちにビットカウント操作をハードウェアで実装するのは得なのか?という点が議論になった。 CPU の設計をできるだけシンプルにするためには、複雑で使用頻度の低い命令は極力減らした方がよい。 例えば SPARC は命令セット中にビットカウント演算があるが、CPU 内には実装しないという方針をとっている(population 命令を実行すると不正命令例外が発生し、それを

  • 「高速文字列解析の世界」を読む前に知っておくと良いこと - EchizenBlog-Zwei

    「高速文字列解析の世界」という大変すばらしいが発売された。わりと敷居が高いではあるので読む前に知っておくとよさそうなことを書いておく。 「高速文字列解析」とは 書でいう高速文字列解析というのは主に2つのことを指している。ひとつはデータを圧縮して小さくしてディスクよりメモリ、メモリよりキャッシュというようにより高速な記憶装置で扱いましょう、という話。もうひとつはデータ構造を工夫することで複雑な操作もそこそこ高速に扱えますよ、という話。つまり「圧縮」の話と「効率的なデータ構造」の話があると考えておくと良い。 キーワードは3つ オビにも書いてあるけれど、書が主に扱うのは「BWT」「簡潔データ構造」「ウェーブレット木」の3つ。具体的には「BWT」が「圧縮」に関わっていて「ウェーブレット木」が「効率的なデータ構造」に関わっている。「簡潔データ構造」は基的な道具として書の色々なところで出て

    「高速文字列解析の世界」を読む前に知っておくと良いこと - EchizenBlog-Zwei
  • あなたの知らないハッシュテーブルの世界

    Please select the category that most closely reflects your concern about the presentation, so that we can review it and determine whether it violates our Terms of Use or isn't appropriate for all viewers.

  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • 『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ

    著者の定義によると、アルゴリズムとは「問題を解決するために必要な手順を正確に規定したレシピ」である。コンピュータ・サイエンスを専門とする大学教授の手による書は、現在当たり前のように使われている偉大なコンピュータ・アルゴリズムがなぜ必要とされたのか、どのように考え出されたか、そして、それが実際にどのような仕組みで動いているのかを教えてくれる。 このように紹介すると、コンピュータやプログラミングが苦手な人は手が遠のいてしまうかもしれないが、どうかご安心を。書を楽しむのに、コンピュータプログラミングやコンピュータ科学の知識は必要ない。必要なのはじっくりと考えることだけだ。 一口にサイエンスといっても面白いポイントはそれぞれに異なるが、書の面白みは間違いなく、過去の偉人たちの難問への挑戦を疑似体験できるところにある。その面白みを満喫するためにも、頭から煙を出しながらじっくりと考えながら読む

    『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ
  • algorithm - ソート済み配列をソートしなおすべからず : 404 Blog Not Found

    2012年01月08日20:30 カテゴリアルゴリズム百選Math algorithm - ソート済み配列をソートしなおすべからず 珠玉のプログラミング Jon Bentley / 小林健一郎訳 ぐぬぅ。男子ゆえ女子をこじらせようがないとはいえ、風邪が普通にこじれている。 というわけでアルゴリズムのことなどつらつら考えていた。 高速な安定ソートアルゴリズム “TimSort” の解説 : Preferred Research Timsort - Wikipedia, the free encyclopedia 要はソートすべき配列中にすでに存在する秩序を活用するのがtimsortなのだと。 だけどすでにソート済みの配列を活用するなら、こういう方法もありではというわけでentry。 If it ain't broke, don't fix it. ソート済みの配列に要素を加えるなら、要素を加

    algorithm - ソート済み配列をソートしなおすべからず : 404 Blog Not Found
  • Algorithm - Suffix Array を JavaScript で再発明してみた : 404 Blog Not Found

    2012年01月16日16:30 カテゴリアルゴリズム百選Lightweight Languages Algorithm - Suffix Array を JavaScript で再発明してみた WEB+DB 総集編 [Vol. 1〜60] もう10年以上前に某社のCTOだったころ、Suffix array(接尾辞配列)の解説を毎週の技術者ミーティングでしたら一名を除いて「ハァ?」状態だったことを思い出しつつ。 Suffix Arrayは何が画期的だったのか? 以下は、計算機科学者でなくても直感的に理解できると思います。 ソートされていない通常のデータの中にあるサブデータ(キー)を検索しようとすると、データの大きさに比例した時間(O(n))がかかる。 ソート済みのデータであれば、二分探索でデータの大きさの対数時間(O(logn))でキーを検索できる。 さらにキーからIDを定数時間で作成でき

    Algorithm - Suffix Array を JavaScript で再発明してみた : 404 Blog Not Found
  • 書評: 集合知プログラミング(Programming Collective Intelligence) | 秋元@サイボウズラボ・プログラマー・ブログ

    いただいたもの。 翻訳が出ると聞いてからずっと気になっていたなので、いただけたのはとてもラッキーだった。 集合知プログラミング 著者/訳者:Toby Segaran 出版社:オライリージャパン( 2008-07-25 ) 定価:¥ 3,570 原題(Building Smart Web 2.0 Application)にあるとおり、集合知プログラミングは、ウェブサイトの背後でいろいろと賢いことをするために使えるいろいろな技法を広く紹介した技術書だ。 大勢の過去の行動データから推薦を行なう 集団をグループに分ける 検索エンジンとランクづけ 最適解を低コストで見つける スパム判定 条件判定のルールを生成する 価格モデルを作っての価格予測 カーネルメソッドやサポートベクトルマシン 遺伝的プログラミング といったトピックが、Pythonのサンプルコードとあわせて解説されている。 内容は、読む

    書評: 集合知プログラミング(Programming Collective Intelligence) | 秋元@サイボウズラボ・プログラマー・ブログ
  • 集合知と多量情報の可視化アルゴリズム本 Programming Collective Intelligence | fladdict

    先日購入したBen FryのVisualizing Dataとあわせて買ってみた、Programming Collective Intelligence: Building Smart Web 2.0 Applications というもかなりよさげ。 端的にいうとWEB2.0コンテンツ用に特化した、統計解析の理論とアルゴリズムの解説。 いわゆる「これを買った人はこれを買ってます」を筆頭に、市場予測やスパム抽出、特徴データのグルーピングなど、集合知を抽出するアルゴリズムが大集合してる感じです。各アルゴリズムの原理の説明から、シンプルな自力実装までが書いてある感じっぽい。こういう系は数式だけあって理解不能か、動作がライブラリに隠蔽されてて理解不能で手が出せなかったけど、このあれば大分理解できそう。以下、乗ってる内容メモ。 ・Amazon的なリコメンドのしくみ ・データのグループ化(クラス

  • 研究動向から考えるx86/x64最適化手法

    【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models

    研究動向から考えるx86/x64最適化手法