タグ

集合論に関するItisangoのブックマーク (3)

  • クラス (集合論) - Wikipedia

    集合論及びその応用としての数学におけるクラスまたは類(るい、英: class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツェルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、フォン・ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。 (どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)

  • 「自然数から成る無限集合に関する問題」 - NazoLab なぞらぼ 科学系ソーシャルコミュニティ

    自然数から成る無限集合に関する問題 数学(一般)

    Itisango
    Itisango 2012/05/25
    "Aを自然数の無限集合とするとき,その中に必ず異なる2つの元 a,b があってa が b を部分列として持つといえるのでしょうか?"
  • 無限を最短で紹介するよ

    無限は人間の理解力を超越した概念だとしても、それで諦めないのが数学者! 無限とは何? 無限はなぜ1通りじゃないの? 無限プラス1って一体なに? 疑問は無限大です。 数学者は「無限」をかなり厳密に定義していますが、稿では「無限とは有限でない数すべてを包括するもの」という、もっと大雑把で身近な定義で通すことにしますね...さ、難しい前置きはこれぐらいにして心を広げ、無限の世界にソ~ッと忍び寄って参りまひょ~。 The Beginning of Infinity - 無限のはじまり 無限を語るその前に、数学的にどう定義するのか、まずはそこんとこ知らないと始まりませんよね。で、これが結構難しいのです。 無限の概念は古代ギリシャ人も知ってたし、アイザック・ニュートン、ゴットフリート・ヴィルヘルム・ライプニッツの微積分学でも重要な位置を占めているんですが、厳密な定義がなされたのは1800年代後半に入

    無限を最短で紹介するよ
    Itisango
    Itisango 2011/07/02
    で、可測基数って存在するの?
  • 1