タグ

NLPとLDAに関するKesinのブックマーク (4)

  • トピックモデルの応用: 関係データ、ネットワークデータ

    NTT コミュニケーション科学基礎研究所 石黒 勝彦 1 2013/01/15-16 統計数理研究所 会議室1 • 機械学習の研究分野では、日々新しい、より 柔軟で表現力の高い(≒複雑な)トピックモ デルが提案されています • このスライドでは、それらのうち、特に構造化 に関する仕事を厳選してご紹介します 2 • 誤解を恐れずにいえば、単純な混合ガウシア ンモデル(GMM)が理解できれば、LDAは理 解できます • GMMがその単純さゆえに非常に幅広いドメ インの連続データで有効なように、LDAも幅 広いドメインの離散データで有効です 3 • モデルが単純ということは、大胆な仮定を置 いてデータを表現していることになります • 実際のデータと明らかに合わない仮定の場 合、これを正す必要があります • 沢山の複雑化したトピックモデルが提案され ています 4 Correlated Topi

  • ISM-2012-TopicModels.ppt

    統計数理研究所 H24年度公開講座 「確率的トピックモデル」 持橋大地 (統計数理研究所) 石黒勝彦 (NTTコミュニケーション科学基礎      研究所) 2013/1/15-16 統計数理研究所 会議室1 講座の構成     1日目: トピックモデルの基礎 –  トピックモデルとは, Naïve Bayes, PLSI, LDA –  EMアルゴリズム, VB-EMアルゴリズム, Gibbsサンプラー, 他のモデルとの関係 2日目: トピックモデルの応用 –  複雑なトピックモデル、時系列モデル –  画像、音声、ネットワークデータ –  半教師あり学習、補助情報あり学習 無限モデル(ノンパラメトリックベイズ)は講座では扱わない 2 講義予定       3 1日目 –  AM/ 導入, LSI, ナイーブベイズ, PLSI, EMアルゴリ

    Kesin
    Kesin 2014/01/14
    トピックモデル、pLSI、LDAの解説、数式、学習
  • Latent Dirichlet Allocation(LDA)を用いたニュース記事の分類 | SmartNews開発者ブログ

    株式会社ゴクロの中路です。 以前のベイズ分類をベースにしたSmartNewsのチャンネル判定で触れたように、SmartNewsで配信する記事を「スポーツ」「エンタメ」「コラム」のようなチャンネルに分類しているのは、人ではなく機械です。そのアルゴリズムとして前回ご紹介したのは「ナイーブベイズ分類器」ですが、記事の分類を行う手法は、他にも様々なものがあります。その中で今回はLatent Dirichlet Allocation(以下LDA)について、先日東京大学の博士課程の皆さんと、社内で合同勉強会を行った際に作成した資料をベースにご紹介します。 LDAでできることの例 前回ご紹介したナイーブベイズ分類器を構築する際には、すでにトピックのラベルが付けられた文章を、学習データとして用意する必要がありました。 一方、LDAの場合は、 東京でサッカー大会が開催された。xx選手のゴールが圧巻であった。

    Kesin
    Kesin 2014/01/14
  • H24:Introduction to Statistical Topic Models

    統計数理研究所 H24年度公開講座 「確率的トピックモデル」サポートページ 講師: 持橋大地 (統数研), 石黒勝彦 (NTTコミュニケーション科学基礎研究所) 講義スライド 持橋分 (2013/1/15) [PDF] (12MB) 石黒分 (2013/1/16) [PDF] ソフトウェア UM (Unigram Mixtures) um-0.1.tar.gz DM (Dirichlet Mixtures) dm-0.1.tar.gz, dm-0.2.tar.gz PLSI (Probabilistic Latent Semantic Indexing) plsi-0.03.tar.gz (外部サイト) LDA (Latent Dirichlet Allocation) lda-0.1.tar.gz 参考文献 「私のブックマーク: Latent Topic Model (潜在的トピックモデ

  • 1