タグ

algorithmとmachinelearningに関するMakotsのブックマーク (17)

  • 披露宴の席次を Gromov-Wasserstein 最適輸送で決めた話

    数理最適化 Advent Calendar 2022の9日目です。 新緑の頃、新型コロナ流行の合間をぬって、ささやかな結婚披露宴を表参道の式場にて催しました。諸々の準備の中でも席次はこだわるとキリがなく、数理最適化を使って決めました。人間関係をできるだけ保つようなゲスト集合から座席集合への写像を考えます。 ゲスト間人間関係を考慮して良い感じの配席を考えたい tl;dr 披露宴をしました 知り合い関係が複雑かつ長机でゲストの席配置が難しい 組合せ爆発は物。高々20人の配置に1週間以上悩んだ結果、数理最適化した方が早いと結論 「知り合い同士を近くに配席する」問題は非凸な二次計画になり汎用ソルバでうまく解けない ゲストを席に"輸送"すると考えて最適輸送の一種で解くとうまくいった 質的に非凸な問題を非凸のまま、しかし性質の良い距離構造を活用するアプローチが奏功したのではないか 再現用Colab

    披露宴の席次を Gromov-Wasserstein 最適輸送で決めた話
  • 最適輸送の解き方

    最適輸送問題(Wasserstein 距離)を解く方法についてのさまざまなアプローチ・アルゴリズムを紹介します。 線形計画を使った定式化の基礎からはじめて、以下の五つのアルゴリズムを紹介します。 1. ネットワークシンプレックス法 2. ハンガリアン法 3. Sinkhorn アルゴリズム 4. ニューラルネットワークによる推定 5. スライス法 このスライドは第三回 0x-seminar https://sites.google.com/view/uda-0x-seminar/home/0x03 で使用したものです。自己完結するよう心がけたのでセミナーに参加していない人にも役立つスライドになっています。 『最適輸送の理論とアルゴリズム』好評発売中! https://www.amazon.co.jp/dp/4065305144 Speakerdeck にもアップロードしました: https

    最適輸送の解き方
  • 異常検知入門と手法まとめ - Qiita

    異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev

    異常検知入門と手法まとめ - Qiita
  • Variational Autoencoder徹底解説 - Qiita

    とします。これはReconstruction Errorと呼ばれます。入力したデータになるべく近くなるように誤差逆伝播法で重みの更新を行うことで学習することができます。 1-2. Variational Autoencoder(VAE) VAEはこの潜在変数$z$に確率分布、通常$z \sim N(0, 1)$を仮定したところが大きな違いです。通常のオートエンコーダーだと、何かしら潜在変数$z$にデータを押し込めているものの、その構造がどうなっているかはよくわかりません。VAEは、潜在変数$z$を確率分布という構造に押し込めることを可能にします。 イメージは下記です。 まだよくわかりませんね。実際にプログラムを動かしたものを見ると少しイメージが湧くかと思います。 まずは入力と出力を対比させてみます。(これは$z$の次元を20に設定して学習したものです。)ちょっとぼやっとしていますが、元の形

    Variational Autoencoder徹底解説 - Qiita
  • EMアルゴリズム徹底解説 - Qiita

    ステップ2 $r_{nk}$を固定して$J$を$\mu_k$で偏微分して最小化します。 式変形をすると、 クラスタ$k$の最適なCentroidは上記のように、クラスター$k$に所属しているデータの平均であることがわかりました。 上記より最初のデモンストレーションで行っていたアルゴリズムは損失関数$J$の最適化によって導出されたものを適用していたことがわかります。 2−3. 実装 上記で示した2ステップを計算して、イテレーションを回すだけのシンプルなプログラムです。最後に更新前のmuと更新後のmuの差を取り、それがある程度小さくなったら収束したと判断し、イテレーションを止めるようにしています。 下記はアルゴリズム部分の抜粋です。プログラムの全文はコチラにあります。 for _iter in range(100): # Step 1 =============================

    EMアルゴリズム徹底解説 - Qiita
  • Alpha Zeroの衝撃と技術的失業|山本一成🚗TURING

    2016年、Google DeepMind社から恐ろしい論文が出された、AlphaGoその名を冠した囲碁プログラムが既存の囲碁ソフトに勝率99%を叩き出したのだ。AlphaGoは強化学習とDeep Learningを組み合わせた囲碁プログラムで、その年に最強の囲碁棋士の一人である李世ドルさんに4勝1負で勝利した。その後も進歩を続けて今のAlphaGoの強さは人類が体感できるレベルを超えるほど強くなったと予想される。 2017年も終わりのころ、Google DeepMind社からまた途方もない論文が発表された。囲碁とほぼ同じ手法で最強レベルのチェスや将棋プログラムを超えたということだった。実際のところ正確に超えたのかどうかちょっとだけ疑問もあるのだが、まず前提として彼らの新手法が途方もない成果をあげたこと素直に祝福したい。彼らは自分たちのプログラムをAlpha Zeroと名付けた。 コンピュ

    Alpha Zeroの衝撃と技術的失業|山本一成🚗TURING
  • はじめてのAdversarial Example

    今回はadversarial exampleについて解説していきます。Adversarial exampleというのは、下図のように摂動を与えることによりモデルに間違った答えを出力させてしまうもののことです。 この例では、もともとモデルがパンダと正しく分類することができていた画像に摂動を与えることで、テナガザルと誤分類させています。しかし、人間には元の画像との違いはほとんど分からず、パンダのままに見えます。 Adversarial exampleは機械学習モデルを実用化していく上で大きな問題となります。例えば、交通標識をadversarial exampleにしてしまえば、自動運転車をだませてしまう可能性があります。 注目を集めてきている研究分野ですが、まだちゃんと調べたことがないという人も多いかと思います。今回もなるべく丁寧に解説していきたいと思います。 目次 基礎 攻撃 防御 論文紹介

    はじめてのAdversarial Example
    Makots
    Makots 2017/10/17
    Adversarial ExampleでAIの電脳をハックすることによりAIの目を盗めそう
  • ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita

    前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する

    ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita
  • 自然言語処理まわりのDeep Learningを自分なりにまとめてみた — KiyuHub

    自然言語処理まわりのDeep Learningを自分なりにまとめてみた “自然言語処理のためのDeep Learning”というスライドを公開しました. 自然言語処理のためのDeep Learning from Yuta Kikuchi カジュアルな感じで自然言語処理まわりのDeep Learningの話題をまとめた感じになっています. きっかけは,勉強会をしていることを知ったOBのbeatinaniwaさんにお願いされたことで, 株式会社Gunosyの勉強会の場で,発表の機会を頂きました. それが,9/11で,その後9/26に研究室内で同じ内容で発表しました. どちらも思った以上に好評を頂け,公開してはと進めて頂いたので,公開することにしました. もちろん間違いが含まれている可能性も多分にあるので.気づいた方はご指摘頂けると幸いです. 内容ざっくり 前半は,ニューラルネットワークを図を使

  • 異常検知の世界へようこそ - Preferred Networks Research & Development

    比戸です。 先週Jubatusの最新0.4.0がリリースされましたが、外れ値検知機能の追加が目玉の一つとなっています(jubaanomaly)。昨年PFIへ入社して初めて手がけた仕事が公開されたということで感慨ひとしおですが、便乗してあまり語られることのない異常検知の世界について書きたいと思います。以下の資料は昨年のFIT2012で使ったものです。 異常検知とは簡単にいえば、「他に比べて変なデータを見つけ出す」タスクです。お正月にテレビで繰り返し流れた、おすぎとピーコのCM(*1)がわかりやすいイメージですね。機械学習の枠組みで言えば”教師無し学習”に属します。分類や回帰、クラスタリングなど応用も多く人気も研究熱も高いタスクに比べると、マイナーです。SVMとか、Random Forestとか、Boostingとか、最近だとDeep Neural Networkとか、有名な必殺技アルゴリズム

    異常検知の世界へようこそ - Preferred Networks Research & Development
  • ウェーブレット木の世界 - Preferred Networks Research & Development

    岡野原です。ウェーブレット木の解説を統数研チャンネルにて行いました。 統数研チャンネル(プレミアム会員ならしばらくタイムシフト視聴可能)。 ウェーブレット木は万能のデータ構造であり、系列データ、全文検索、グラフ、二次元情報、フィンガープリントなど様々なデータに対して多くの操作をサポートします。 解説では大規模データの背景、ウェーブレット木の作り方、使い方、様々なデータへの適用、最前線(ウェーブレット行列)などを紹介しています。解説は拙著「高速文字列解析の世界」とあわせてみていただけたらと思います。

    ウェーブレット木の世界 - Preferred Networks Research & Development
  • Deep Learning の概要 - Sideswipe

    はじめに 去年の 機械学習×プログラミング勉強会 vol.2 で、Deep Learning の概要について発表させていただきました。誘っていただいた @07c00 さん、ありがとうございました。 Deep learning from Kazuya Gokita 詳しくは上記のスライドを御覧ください(注:Auto Encoder と DBM をごっちゃに説明しているので正しくありません、そのうち直します)。 Deep Learning とは Deep Learning は、ニューラルネットワーク*1のひとつで、5層とか10層とか、従来の手法ではうまく学習できなかった深い層の学習をうまくできるようにしたアルゴリズムです。 Deep Learning が目指したところ 入力に近い層では、単純な特徴抽出しかできませんが、それらの重み付け和をとると表現能力が上がります。それをさらに上位の層に入力し

    Deep Learning の概要 - Sideswipe
  • プログラマが解くのに1時間かかる問題を機械学習に放り込む話 | ぱろすけのメモ帳

    プログラマが解くのに1時間かかる問題を機械学習に放り込む話 By ぱろすけ on 4月 11th, 2012 皆様、 Twitter やら facebook で数カ月前に爆発的に拡散された以下の問題をご存知でしょうか。 ご存知の方が多いでしょうね。単に、イコールの左側の4つの数字の丸の数の合計がイコールの右側に等しい、それだけですね。とても簡単な問題です。ちなみに僕は解けませんでした。 これについて、昨日このようなエントリが投稿され、話題になっています。 プログラマが解くのに1時間かかるという問題が普通にプログラマな方法で5分で解ける話 http://d.hatena.ne.jp/nowokay/20120410 こりゃあ炎上するでしょうねえ。だって、プログラマも何も関係なく、ふつうに問題を解いているのですから。 先ほどのエントリでは、イコールの左側の数値は変数であり、それを足しあわ

  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • 統計的機械学習入門

    統計的機械学習入門(under construction) 機械学習歴史ppt pdf 歴史以前 人工知能の時代 実用化の時代 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise データの性質 数学のおさらいppt pdf 線形代数学で役立つ公式 確率分布 情報理論の諸概念 (KL-divergenceなど) 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 パーセプトロン カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 クラスタリングppt pdf 距離の定義 階層型クラスタリング K-means モデル推定ppt pdf 潜在変数のあるモデル EMアル

  • 統計的機械学習(Hiroshi Nakagawa)

    統計的機械学習 (under construction) 導入ppt pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 次元の呪い 損失関数, bias, variance, noise 数学のおさらいppt pdf 線形代数学で役立つ公式 情報理論の諸概念 (KL-divergenceなど) 指数型分布族、自然共役 正規分布(条件付き、および事前分布) 評価方法ppt pdf 順位なし結果の評価(再現率、精度、適合率、F値) 順位付き結果の評価 線形回帰と識別ppt pdf 線形回帰 正規方程式 正規化項の導入 線形識別 カーネル法ppt pdf 線形識別の一般化 カーネルの構築法 最大マージン分類器 ソフトマージンの分類器 SVMによる回帰モデル SVM実装上の工夫 モデル推定ppt pdf 潜在変数のあるモデル EMアルゴリズム 変分ベイズ法 Expecta

  • Support Vector Machine

    最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.

  • 1