タグ

科学と*あとで読むに関するNATTIのブックマーク (23)

  • Liked - 日本の科学と技術

    SNSで反響があった記事 (FaceBook Like順) FB Like 1.7K 【研究者の適性】自分が研究に向いている人かを知る30の質問 FB Like 1.2K 酷似する画像を含む生命科学論文が大量に指摘される FB Like 696 採択される科研費申請書の書き方22のヒント FB Like 580 沼研の伝説的なエピソード:沼正作(1929-92) FB Like 517 10年間で論文20報が出なかった研究室の教授を解雇 FB Like 493 【変わる科研費】新学術領域研究を見直しへ~制度の主な変更点~ FB Like 384 論文を出す力 ~ リジェクトの受け止めかた FB Like 314 フィンランドの学校教育制度がベストな秘密をマイケル・ムーアが暴く FB Like 314 ハゲタカジャーナル論文掲載 不名誉な大学ランキング FB Like 282 論文を出すため

  • 腸内細菌を持たないマウスが「ボッチ」になる理由が明らかに - ナゾロジー

    細菌が動物に社交性を与えていたようです。 6月30日にカリフォルニア工科大学の研究者たちにより『Nature』に掲載された論文によれば、腸内細菌がマウスに社交性を与える仕組みを解明したとのこと。 研究では解明された仕組みを利用することで社交性の回復にも成功しました。 いったいどんな仕組みで腸内細菌はマウスに社交性を与えていたのでしょうか?

    腸内細菌を持たないマウスが「ボッチ」になる理由が明らかに - ナゾロジー
  • https://utokyo-icepp.github.io/qc-workbook/welcome.html

  • 役に立たない趣味の研究がものすごく役に立つ一大技術体系を生む事例

    shinshinohara @ShinShinohara 世の中に全然役に立たない、趣味としか思えない研究が、とてつもなく人類に貢献する技術体系を育てることになった事例を紹介。 それは、ミミイカという光るイカの研究。これがやがて、アレルギーや心の病にも深く関係する、腸内細菌などの研究にも波及していった。 2020-11-24 21:47:50 shinshinohara @ShinShinohara ミミイカは手のひらに乗るような、まん丸でかわいいイカ。ダイバーに人気で知られるが、取り立てて役に立たないイカ。そのイカがなぜ光るのか、という、これまた趣味としか思えない研究を始めた人がいた。 研究の結果、イカが光っているのではなく、共生するバクテリアが光ることを突き止めた。 2020-11-24 21:50:02 shinshinohara @ShinShinohara ところがこのバクテリア

    役に立たない趣味の研究がものすごく役に立つ一大技術体系を生む事例
  • EM菌の正体(構成微生物を調べました)|片瀬久美子

    EM菌は、元々農業用の微生物資材として堆肥作りを目的として開発されましたが、「農業、環境、健康、品加工、化学合成、工業、エネルギー、土木建築など広範囲で応用可能であり、従来の微生物関連資材の常識をはるかに超えたものである」としてあたかも万能であるかの様に宣伝されるようになりました。しかし、そのほとんどは科学的根拠に乏しく「ニセ科学」だと批判されています。 参考:疑似科学とされるものの科学性評定サイト(明治大学科学コミュニケーション研究所) http://www.sciencecomlabo.jp/health_goods/effective_microorganisms.html これまではEM菌を構成する微生物が大まかにしか明かされておらず、「特殊な善玉菌の集合体」という幻想が守られてきました。そこで、最新技術である「メタゲノム解析」(メタ16S解析とメタITS解析)により、網羅的に構

    EM菌の正体(構成微生物を調べました)|片瀬久美子
  • プレスリリース - 史上初、ブラックホールの撮影に成功 ― 地球サイズの電波望遠鏡で、楕円銀河M87に潜む巨大ブラックホールに迫る - アルマ望遠鏡

    プレスリリース全文と画像・映像などは、国立天文台のプレスキット「史上初、ブラックホールの撮影に成功」から閲覧・ダウンロードしていただけます。日チームの貢献については、EHT-Jウェブサイトをご覧ください。 イベント・ホライズン・テレスコープは、地球上の8つの電波望遠鏡を結合させた国際協力プロジェクトであり、ブラックホールの画像を撮影することを目標としています。2019年4月10日、研究チームは世界6か所で同時に行われた記者会見において、巨大ブラックホールとその影の存在を初めて画像で直接証明することに成功したことを発表しました。 イベント・ホライズン・テレスコープで撮影された、銀河M87中心の巨大ブラックホールシャドウ。リング状の明るい部分の大きさはおよそ42マイクロ秒角であり、月面に置いた野球のボールを地球から見た時の大きさに相当します。 Credit: EHT Collaboratio

    プレスリリース - 史上初、ブラックホールの撮影に成功 ― 地球サイズの電波望遠鏡で、楕円銀河M87に潜む巨大ブラックホールに迫る - アルマ望遠鏡
  • 外国人「あまり注目されていない最近の科学的革新や発見」海外の反応 : 暇は無味無臭の劇薬

    Comment by Flea_Shooter あまり十分な注目を集めていない、最近の科学的革新/発見って何がある? reddit.com/r/AskReddit/comments/b7ssbh/what_are_some_recent_scientific/ Comment by NettleGnome 40.1k ポイント スウェーデン人研究者の素晴らしいコーディングによって1時間分のMRI検査を70秒で出来るようになった。 これが数年後には全世界に登場するってことを考えると当にワクワクする。 追記:これがスウェーデン語の記事 https://www.dagensmedicin.se/artiklar/2018/11/20/en-mix-av-bilder-ger-snabbare-mr/ Comment by _babycheeses 12.8k ポイント ↑今年90分くらいMRI

    外国人「あまり注目されていない最近の科学的革新や発見」海外の反応 : 暇は無味無臭の劇薬
  • 「“統計的に有意差なし”もうやめませんか」 Natureに科学者800人超が署名して投稿

    「統計的に有意差がないため、2つのデータには差がない」──こんな結論の導き方は統計の誤用だとする声明が、科学者800人超の署名入りで英科学論文誌「Nature」に3月20日付で掲載された。調査した論文の約半数が「統計的有意性」を誤用しており、科学にとって深刻な損害をもたらしていると警鐘を鳴らす。 「統計的に有意差がない=違いがない」は間違い 例えば、ある薬の効能を調べたいとする。統計学では一般的に「仮説検定」を行って薬を与えたグループとそうでないグループを比較し、薬効の指標となる何らかのパラメータに統計的有意差があるかどうかを見る。仮説検定は、2つの事象の差異が偶然生じたものかどうかを統計的に結論付けるものだ。 もし、統計的有意差がある(薬を与えた群のパラメータの方が有意に大きい)なら「薬には効能がある」という結論を導けるが、有意差がなかった場合はどうだろうか。 「統計的有意差がある=薬効

    「“統計的に有意差なし”もうやめませんか」 Natureに科学者800人超が署名して投稿
  • 四角が丸に、魚が蝶に──“不可能立体”研究10年、杉原教授が導き出した「錯視の方程式」

    杉原教授は3月に明治大を定年退職するに当たり、12日に最終講座を行った。10年間の錯視研究で、「タネ明かしをしても脳は錯覚を修正できないこと」と「両目で見ても錯覚は起こる場合があること」に衝撃を受け、その上で1つの疑問が浮かんだと話す。 「非直角を直角に見せる」新たな立体トリックを考案 ペンローズの四角形に見える立体を作ったのは、杉原教授が初めてではない。従来も、実際にはつながっていない四角柱をつながっているように見せかける「不連続のトリック」や、四角柱を曲げてつながった立体を作る「曲面のトリック」といった立体化があったが、杉原教授は「直角に見えるところに直角以外の角度を使う」という方法を取った。 非直角のアプローチでは、四角柱は曲がらず、不連続にもならない。

    四角が丸に、魚が蝶に──“不可能立体”研究10年、杉原教授が導き出した「錯視の方程式」
  • どうすれば脳を「理解」できるのか:「コンピュータチップの神経科学」から考える - 重ね描き日記(rmaruy_blogあらため)

    今回は「探求メモ」の特別版といった位置づけで、長めの記事を投稿します。2017年に出た神経科学についてのちょっと面白い論文を読み、友人と議論しながらあれこれ考えて書いたものです。昆虫の神経科学と合成生物学を研究している、鈴木力憲(@Mujinaclass)氏との共著です。この文章は、鈴木氏の研究ブログにも同時掲載されています。(同ブログには、研究者として稿を書いた意図をまとめた「序文」がありますので、このテーマのご専門の方はまずそちらをご覧ください。) どうすれば脳を「理解」できるのか:「コンピュータチップの神経科学」から考える 文章:丸山隆一(@rmaruy)・鈴木力憲(@Mujinaclass) 近年、神経科学の進歩がすさまじい。さまざまな技術革新によって、脳に関して得られるデータは飛躍的に増えた。「記憶を書き換える」「全脳をシミュレーションする」といった華々しい研究の数々は、神経科

    どうすれば脳を「理解」できるのか:「コンピュータチップの神経科学」から考える - 重ね描き日記(rmaruy_blogあらため)
  • アインシュタインの誤りを、10万人のゲームプレイヤーたちが証明

    アインシュタインの誤りを、10万人のゲームプレイヤーたちが証明2018.05.21 20:0083,351 Rina Fukazu 10万人のゲーマー VS アルバート・アインシュタイン 数学というツールを使いながら、宇宙の謎について解明してきた物理学。多かれ少なかれ未解明な分野もあるなかで、かのアインシュタインをも混乱させた現象として知られるのが「量子もつれ」です。彼は当時、量子もつれのことを「気味の悪い遠隔作用」と表現していました。 この現象がどんなものなのか、身近なモノを使ってたとえてみるとこんな感じなります。 たとえば、ここにリンゴ1個とオレンジ1個があるとします。これらをまったくのランダムで別々のカバンに入れて、別々の場所にある学校に向かう2人の子どもに持たせたとしましょう。そのあと学校についたどちらかの子どもが鞄を開けてどちらのフルーツが入っていたか分かれば、即座にもうひとりの

    アインシュタインの誤りを、10万人のゲームプレイヤーたちが証明
  • 2が現れる素数 - INTEGERS

    この記事は非公開化されました。 integers.hatenablog.com 非公開前の内容要約: ある216桁の素数の紹介。 この記事の内容は部分的に書籍『せいすうたん12』の第1話に収録されています。 integers.hatenablog.com

    2が現れる素数 - INTEGERS
  • 日本のアカデミズムは危機にあるのか――ノーベル賞受賞者も警鐘 - Yahoo!ニュース

    21世紀に入ってから、日はノーベル賞の受賞ラッシュが続いている。2001~2016年に、16人(米国籍取得者も含む)が科学分野で受賞し、20世紀の科学分野の受賞者(6人)を大きく上回っている。だが、これだけの華々しい成果を上げてきた日の基礎研究に対し、様々な方面から警鐘が強く鳴らされている。ノーベル賞受賞者も指摘する、その元凶とは。(ライター・青山祐輔/Yahoo!ニュース 特集編集部)

    日本のアカデミズムは危機にあるのか――ノーベル賞受賞者も警鐘 - Yahoo!ニュース
  • 「人間はどんな悪者にもなれる」脳科学者・中野信子が説く、“わかりやすさ”だけで判断する恐ろしさ

    役割さえ与えられれば、人間はどんな悪者にもなれる 中野信子氏(以下、中野):大衆に判断をゆだねることの恐ろしさについてもう少しお話していきましょう。 人は、自分のことを「正しい判断をするものだ」と無自覚に信じている。これは多くの実験が示唆しているところです。 例えば、ミルグラム実験と呼ばれる有名な実験があります。これは、閉鎖的な状況で、権威者の指示にどれだけ人間が従ってしまうものか、その心理状況を調べるために行われた実験です。 実験者、つまり権威者から「あなたは生徒役の被験者が課題を間違ったら、罰として電気ショックを加えてください」と依頼される。あらかじめ、自分でもその電気ショックがどんなものか、体験もしてもらいます。 生徒が一問間違えるごとに15ボルトずつ電圧を上げるように指示されるのですが、それぞれの電気ショックボタンには「ストロング・ショック」やそれを超えた「エクストリーム・インテン

    「人間はどんな悪者にもなれる」脳科学者・中野信子が説く、“わかりやすさ”だけで判断する恐ろしさ
  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

  • 研究生活最大のショック - 海の底には何がある

    朝、交尾の後にメスの交尾器を壊してしまうクモを発見という記事がナショナルジオグラフィックのサイトに出ているのに気がついてのけぞる。この日記でもたびたび書いてきていた事だが、私もギンメッキゴミグモで交尾後にメスの交尾器が破壊され、それによりメスの再交尾能力が失われる事を発見していたからだな。種は違えども、全く同じ内容の研究だ。これは世界で初めての発見なので、私的には興奮して1年半いろいろ実験してきていたところ、全く同じ研究が他所から出たという事は、発見者は私じゃない事になってしまうわけで、とても辛い。実際は独立に二つの研究が行われていたわけだが、科学の世界では論文の出版が全てなわけで、いくら「私も見つけていた」って言っても仕方ないわけ。いや、こういう事は生き馬の目を抜く最先端の生命科学分野で起こるもので、まさかのどかな動物行動学分野に暮らす私がこんな経験をするなんて思わなかった。。。いや、

    研究生活最大のショック - 海の底には何がある
  • 赤はなぜ色褪せるのか

    9月6 赤はなぜ色褪せるのか カテゴリ:有機化学構造 街を歩いていると、色あせた古い標識を見かけることがあります。 この標識は来鮮やかな赤色の矢印なのですが、ご覧の通りかなり褪色して薄いピンクのような色合いになっています。これに対し、国道のおにぎりマークや縁取りの青はまだ鮮やかさを保っています。このタイプの標識は、1995年から設置されるようになったものですので、20年ほどで赤だけがずいぶん色褪せてしまっているということになります。 このように、赤色が他の色より褪色しやすいというのは、ちょくちょくみかける現象です。ひどくなると下の写真のように、肝心なところがきれいに抜けて読めなくなったりします。大事なことは赤で書きたくなりますが、時の流れを考えるとあまり得策でないことがわかります。 さて、なぜ赤色はさめてしまいやすいのでしょうか?これは偶然ではなく、それなりの理由があります。まず赤い塗料

    赤はなぜ色褪せるのか
  • 物理学?の質問です。 http://q.hatena.ne.jp/1412510338 ↑この質問のHarlockさんの回答で >この穴が仮に真空でないとしたら、地球の表面を覆う大気が地球の両…

    物理学?の質問です。 http://q.hatena.ne.jp/1412510338 ↑この質問のHarlockさんの回答で >この穴が仮に真空でないとしたら、地球の表面を覆う大気が地球の両側の穴から >落ちていくことになりますよね。このとき単純に穴の体積分の空気が移動して >終わりということではなく、地球の中心に行くほど大気の密度が濃くなるような >形でどんどん空気が穴に落ちて行ってしまうのではないでしょうか? >このとき、地表の酸素は維持できるのでしょうか? とあります。 地表上にある大気層が1万kmだとすると、トンネルの中心までがおよそ6000kmですから単純計算でせいぜい1.6気圧程度、トンネル内の重力が小さいことを考慮すると1.3気圧程度になると考えました。 これで合ってますでしょうか?

  • 小保方論文の本当の憂鬱 - 白のカピバラの逆極限 S.144-3

    小保方晴子さんが iPS 細胞を超える STAP 細胞という大発見をしたとして、2014年1月にマスメディアの寵児となった。しかし、翌月には、論文に怪しい箇所があると雲行きが怪しくなり、そろそろ論文撤回*1が決まりそうだ。 その論文の疑惑については、小保方晴子のSTAP細胞論文の疑惑 というページが詳しい。ただ、図や文章がコピーというようなところは誰でも分かるように書かれているが、致命的な箇所は専門家と思しき人の掲示板への書き込み*2の引用しかない。だから、誰にでも分かるように解説してみたい。 まず、生物は細胞からできている。細胞の材料はかなりがタンパク質だ。タンパク質の設計図が、遺伝子。人間の遺伝子は3万くらいしかない。 一つの遺伝子から作られるタンパク質はだいたい一つに決まっているのだけれども、大きな例外が免疫システム。免疫システムでは、外来からのいろいろ侵入物を認識するために、いろん

    小保方論文の本当の憂鬱 - 白のカピバラの逆極限 S.144-3
  • 首を切断された『プラナリア』は頭の再生と同時に記憶も再生される事が明らかに - アクアカタリスト

    最新の研究によるとプラナリアは、頭を切断してもなお、頭が再生してしまえば切断される以前の記憶を維持したままとなることがわかった。 米マサチューセッツ州にあるタフツ大学の研究者 Michael Levin と Tal Shomra はプラナリアに秘められた驚くべき能力を発見し実験によって証明した。 扁形動物のプラナリアは著しい再生能力を持つ。彼らには、人間と比較するとシンプルではあるが臓器や体組織の多く持ち、これらの中には比較的複雑な構造の脳も含まれている。切断した断片から完全に再生することができ、その著しい再生能力のため古くから研究されている。 wikipedia-プラナリア 体表に繊毛があり、この繊毛の運動によって渦ができることからウズムシと呼ばれる。淡水、海水および湿気の高い陸上に生息する。 プラナリアの再生能力は著しく、ナミウズムシの場合、前後に3つに切れば、頭部からは腹部以降が、